PyTorch 1.0 中文官方教程:对抗性示例生成

译者:cangyunye

作者: Nathan Inkawhich

如果你正在阅读这篇文章,希望你能理解一些机器学习模型是多么有效。现在的研究正在不断推动ML模型变得更快、更准确和更高效。然而,在设计和训练模型中经常会忽视的是安全性和健壮性方面,特别是在面对欺骗模型的对手时。

本教程将提高您对ML模型安全漏洞的认识,并将深入探讨对抗性机器学习这一热门话题。您可能会惊讶地发现,在图像中添加细微的干扰会导致模型性能的巨大差异。鉴于这是一个教程,我们将通过一个图像分类器上的示例来探索这个主题。具体来说,我们将使用第一个也是最流行的攻击方法之一,快速梯度符号攻击Fast Gradient Sign Attack(FGSM),以欺骗一个MNIST分类器。

威胁模型

就上下文而言,有许多类型的对抗性攻击,每一类攻击都有不同的目标和对攻击者知识的假设。然而,总的目标是在输入数据中添加最少的扰动,以导致所需的错误分类。攻击者的知识有几种假设,其中两种是:白盒黑盒。白盒攻击假定攻击者具有对模型的全部知识和访问权,包括体系结构、输入、输出和权重。黑盒攻击假设攻击者只访问模型的输入和输出,对底层架构或权重一无所知。目标也有几种类型,包括错误分类源/目标错误分类。错误分类的目标意味着对手只希望输出分类是错误的,而不关心新的分类是什么。源/目标错误分类意味着对手想要更改原来属于特定源类的图像,以便将其分类为特定的目标类。

在这种情况下,FGSM攻击是一种以错误分类为目标的白盒攻击。有了这些背景信息,我们现在可以详细讨论攻击。

快速梯度符号攻击

到目前为止,最早也是最流行的对抗性攻击之一被称为快速梯度符号攻击(FGSM),由Goodfellow等人在解释和利用对抗性示例( Explaining and Harnessing Adversarial Examples)时介绍到。这种攻击非常强大,而且直观。它被设计用来攻击神经网络,利用他们学习的方式,梯度gradients。这个想法很简单,比起根据后向传播梯度来调整权重使损失最小化,这种攻击是根据相同的反向传播梯度调整输入数据来最大化损失。换句话说,攻击使用了输入数据相关的梯度损失方式,通过调整输入数据,使损失最大化。

在我们深入代码之前,让我们看看著名的FGSM panda示例并提取一些符号。

从图像中看,\(\mathbf{x}\) 是一个正确分类为“熊猫”(panda)的原始输入图像, \(y\) 是对\(\mathbf{x}\)的真实表征标签ground truth label, \(\mathbf{\theta}\) 表示模型参数, 而 \(J(\mathbf{\theta}, \mathbf{x}, y)\) 是用来训练网络的损失函数。 这种攻击将梯度后向传播到输入数据来计算 \(\nabla_{x} J(\mathbf{\theta}, \mathbf{x}, y)\)。然后将输入数据通过一小步(\(\epsilon\) 或 如图中的\(0.007\) ) 在(i.e. \(sign(\nabla_{x} J(\mathbf{\theta}, \mathbf{x}, y))\)) 方向上调整,使损失最大化。结果将得到受到干扰的图像, \(x‘\),尽管图片还是“熊猫”,但它一杯目标网络错误分类为“长臂猿”(gibbon)了

希望看到现在的你,已经明确了解了本教程的动机,那么,让我们开始实现它吧。

阅读全文/改进本文

原文地址:https://www.cnblogs.com/wizardforcel/p/10350431.html

时间: 2024-08-01 20:57:04

PyTorch 1.0 中文官方教程:对抗性示例生成的相关文章

PyTorch 1.0 中文官方教程:使用 Amazon AWS 进行分布式训练

译者:yportne13 作者: Nathan Inkawhich 编辑: Teng Li 在这篇教程中我们会展示如何使用 Amazon AWS 的两个多路GPU节点来设置,编写和运行 PyTorch 1.0 分布式训练程序.首先我们会介绍 AWS 设置, 然后是 PyTorch 环境配置, 最后是分布式训练的代码.你会发现想改成分布式应用你只需要对你目前写的训练程序做很少的代码改动, 绝大多数工作都只是一次性的环境配置. Amazon AWS 设置 在这篇教程中我们会在两个多路 GPU 节点上

PyTorch 1.0 中文官方教程:混合前端的 seq2seq 模型部署

译者:cangyunye 作者: Matthew Inkawhich 本教程将介绍如何是seq2seq模型转换为PyTorch可用的前端混合Torch脚本. 我们要转换的模型是来自于聊天机器人教程 Chatbot tutorial. 你可以把这个教程当做Chatbot tutorial的第二篇章,并且部署你的预训练模型,或者你也可以依据本文使用我们采取的预训练模型.就后者而言,你可以从原始的Chatbot tutorial参考更详细的数据预处理,模型理论和定义以及模型训练. 什么是混合前端(Hy

PyTorch 1.0 中文官方教程:使用ONNX将模型从PyTorch传输到Caffe2和移动端

译者:冯宝宝 在本教程中,我们将介绍如何使用ONNX将PyTorch中定义的模型转换为ONNX格式,然后将其加载到Caffe2中.一旦进入Caffe2,我们就可以运行模型来仔细检查它是否正确导出,然后我们展示了如何使用Caffe2功能(如移动导出器)在移动设备上执行模型. 在本教程中,你需要安装onnx和Caffe2.您可以使用pip install onnx获取onnx的二进制版本. 注意: 本教程需要PyTorch master分支,可以按照 这里说明进行安装. # 一些包的导入 impor

PyTorch 1.0 中文官方教程:使用 PyTorch 进行图像风格转换

译者:bdqfork 作者: Alexis Jacq 简介 本教程主要讲解如何实现由Leon A. Gatys,Alexander S. Ecker和Matthias Bethge提出的 Neural-Style 算法.Neural-Style或者叫Neural-Transfer,可以让你使用一种新的风格将指定的图片进行重构.这个算法使用三张图片,一张输入图片,一张内容图片和一张风格图片,并将输入的图片变得与内容图片相似,且拥有风格图片的优美风格. 基本原理 原理很简单:我们定义两个间距,一个用

PyTorch 1.0 中文官方教程:空间变换器网络教程

译者:冯宝宝 作者: Ghassen HAMROUNI 在本教程中,您将学习如何使用称为空间变换器网络的视觉注意机制来扩充您的网络.你可以在 DeepMind paper阅读有关空间变换器网络的更多内容. 空间变换器网络是对任何空间变换的差异化关注的概括.空间变换器网络(简称STN)允许神经网络学习如何在输入图像上执行空间变换,以增强模型的几何不变性.例如,它可以裁剪感兴趣的区域,缩放并校正图像的方向.它可能是一种有用的机制,因为CNN对于旋转和缩放以及更一般的仿射变换并不是不变的. 关于STN

PyTorch 1.0 中文官方教程:序列模型和LSTM网络

译者:ETCartman 之前我们已经学过了许多的前馈网络. 所谓前馈网络, 就是网络中不会保存状态. 然而有时 这并不是我们想要的效果. 在自然语言处理 (NLP, Natural Language Processing) 中, 序列模型是一个核心的概念. 所谓序列模型, 即输入依赖于时间信息的模型. 一个典型的序列模型是隐马尔科夫模型 (HMM, Hidden Markov Model). 另一个序列模型的例子是条件随机场 (CRF, Conditional Random Field). 循

Hadoop MapReduce 官方教程 -- WordCount示例

Hadoop MapReduce 官方教程 -- WordCount示例: http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html#%E4%BE%8B%E5%AD%90%EF%BC%9AWordCount+v1.0

Varnish3.0中文官方翻译教程

本教程为官方教程的完整翻译.并做了一定总结.整理.整个Varnish的学习需要分成两个部分,PART1:部署篇,PART2:应用篇  第一部分:部署篇作为一个Server Service,部署是最基本的,同时也没有太多需要说明的.按照官方的教程,一运行便可了.但是需要注意的是,–perfix什么的,具体怎么设置的,可要好好的记住,否则,以后要查起来,可就没有头绪了.另外,装了什么样的插件也要清楚的.下面介绍下,安装方法.针对CentOS系统,有两种方法安装,一种是通过rpm,另一种是通过源码安装

ActiveReports 报表控件官方中文入门教程 (2)-创建、数据源、浏览以及发布

原文:ActiveReports 报表控件官方中文入门教程 (2)-创建.数据源.浏览以及发布 本篇文章将阐述首次使用 ActiveReports 报表控件 的方法,包括添加报表文件.绑定数据源以及如何发布报表等内容. ActiveReports 报表控件官方中文入门教程 (1)-安装.激活以及产品资源 ActiveReports 报表控件官方中文入门教程 (3)-如何选择页面报表和区域报表 主要内容包括: 新建工程 在工程中添加ActiveReports报表文件 添加报表数据源 浏览报表 发布