Machine Learning for hackers读书笔记(十)KNN:推荐系统

#一,自己写KNN

df<-read.csv(‘G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\data\\example_data.csv‘)
head(df)

#得出距离矩阵
distance.matrix <- function(df)
{

#生成一万个NA,并转成100*100的矩阵
distance <- matrix(rep(NA, nrow(df) ^ 2), nrow = nrow(df))

#计算两两之间的欧氏距离

for (i in 1:nrow(df))

{
for (j in 1:nrow(df))
{
distance[i, j] <- sqrt((df[i, ‘X‘] - df[j, ‘X‘]) ^ 2 + (df[i, ‘Y‘] - df[j, ‘Y‘]) ^ 2)
}
}
return(distance)
}

#查找与数据点i距离最短的前k个点
k.nearest.neighbors <- function(i, distance, k = 5)
{

#distance[i, ]是所有点与点i的距离,排个序,取K个下标,从2开始的原因是排第1位的就是是数据点i自己
return(order(distance[i, ])[2:(k + 1)])
}

#得出预测值
knn <- function(df, k = 5)
{

#得出距离矩阵
distance <- distance.matrix(df)

#predictions存NA
predictions <- rep(NA, nrow(df))
for (i in 1:nrow(df))
{

#得出与i最近的K个点的下标
indices <- k.nearest.neighbors(i, distance, k = k)

#均值大于0.5赋1.否则赋0
predictions[i] <- ifelse(mean(df[indices, ‘Label‘]) > 0.5, 1, 0)
}
return(predictions)
}

#添加预测列
df <- transform(df, kNNPredictions = knn(df))

#以下是计算预测错误的个数,共7个,总共也就100个,正确率是93%
sum(with(df, Label != kNNPredictions))
#把刚才自己写的KNN函数删除
rm(‘knn‘)

#二、以下才是用R中的函数来做KNN

library(‘class‘)
df<-read.csv(‘G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\data\\example_data.csv‘)
n <- nrow(df)
set.seed(1)

#从1到n中随机抽一半作为训练集,剩下的为测试集
indices <- sort(sample(1:n, n * (1 / 2)))
training.x <- df[indices, 1:2]
test.x <- df[-indices, 1:2]
training.y <- df[indices, 3]
test.y <- df[-indices, 3]
# There‘s a bug here!
predicted.y <- knn(training.x, test.x, training.y, k = 5)

#预测错了7个点,但测试集才50条观测行,因此正确率86%
sum(predicted.y != test.y)

#下面看看逻辑回归
logit.model <- glm(Label ~ X + Y, data = df[indices, ])
predictions <- as.numeric(predict(logit.model, newdata = df[-indices, ]) > 0)
sum(predictions != test.y)

#结果是50行预测错了16个点,正确率只有68%,因此结论是如果问题完全不是线性时,K近邻的表现好过GLM

#三、以下进行推荐案例,用Kaggle的数据,根据一个程序员已经安装的程序包来预测这个程序员是否会安装另一个程序包

installations <- read.csv(‘G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\data\\installations.csv‘)
head(installations)
library(‘reshape‘)

#数据集中共三列,分别是Package,User,Installed

#cast函数的作用:将数据集中的数据,User为行,Package为列,值为是否安装

#结果矩阵中,第一列是用户名

user.package.matrix <- cast(installations, User ~ Package, value = ‘Installed‘)

row.names(user.package.matrix) <- user.package.matrix[, 1]

user.package.matrix <- user.package.matrix[, -1]

#计算一下相关性

similarities <- cor(user.package.matrix)

#把相似度转换为距离矩阵,把相似度1转换为距离0,把相似度-1转换为距离无穷大
distances <- -log((similarities / 2) + 0.5)

#返回与数据点i最近的K个点的下标

k.nearest.neighbors <- function(i, distances, k = 25)
{
return(order(distances[i, ])[2:(k + 1)])
}

installation.probability <- function(user, package, user.package.matrix, distances, k = 25)
{
neighbors <- k.nearest.neighbors(package, distances, k = k)
return(mean(sapply(neighbors, function (neighbor) {user.package.matrix[user, neighbor]})))
}

#对于用户1有多少概率安装程序包1

installation.probability(1, 1, user.package.matrix, distances)

#计算出用户最可能安装的程序包,按概率排序

most.probable.packages <- function(user, user.package.matrix, distances, k = 25)
{
return(order(sapply(1:ncol(user.package.matrix),
function (package)
{
installation.probability(user,
package,
user.package.matrix,
distances,
k = k)
}),
decreasing = TRUE))
}

user <- 1

listing <- most.probable.packages(user, user.package.matrix, distances)

colnames(user.package.matrix)[listing[1:10]]

时间: 2024-10-20 09:23:48

Machine Learning for hackers读书笔记(十)KNN:推荐系统的相关文章

Machine Learning for hackers读书笔记(十二)模型比较

library('ggplot2')df <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\12-Model_Comparison\\data\\df.csv') #用glm logit.fit <- glm(Label ~ X + Y,family = binomial(link = 'logit'),data = df) logit.predictions <- ifelse(predict(logit

Machine Learning for hackers读书笔记(六)正则化:文本回归

data<-'F:\\learning\\ML_for_Hackers\\ML_for_Hackers-master\\06-Regularization\\data\\' ranks <- read.csv(file.path(data, 'oreilly.csv'),stringsAsFactors = FALSE) library('tm') documents <- data.frame(Text = ranks$Long.Desc.)row.names(documents) &

Machine Learning for hackers读书笔记(二)数据分析

#均值:总和/长度 mean() #中位数:将数列排序,若个数为奇数,取排好序数列中间的值.若个数为偶数,取排好序数列中间两个数的平均值 median() #R语言中没有众数函数 #分位数 quantile(data):列出0%,25%,50%,75%,100%位置处的数据 #可自己设置百分比 quantile(data,probs=0.975) #方差:衡量数据集里面任意数值与均值的平均偏离程度 var() #标准差: sd() #直方图,binwidth表示区间宽度为1 ggplot(hei

Machine Learning for hackers读书笔记(三)分类:垃圾过滤(未完成)

#定义函数,打开每一个文件,找到空行,将空行后的文本返回为一个字符串向量,该向量只有一个元素,就是空行之后的所有文本拼接之后的字符串 #很多邮件都包含了非ASCII字符,因此设为latin1就可以读取非ASCII字符 #readLines,读取每一行作为一个元素 get.msg <- function(path){ con <- file(path, open = "rt") text <- readLines(con) # The message always be

Machine Learning for hackers读书笔记(一)使用R语言

#使用数据:UFO数据 #读入数据,该文件以制表符分隔,因此使用read.delim,参数sep设置分隔符为\t #所有的read函数都把string读成factor类型,这个类型用于表示分类变量,因此将stringsAsFactors设置为False #header=F表示文件中并没有表头 #na.string='',表示把空元素设置为R中的特殊值NA,即将所有空元素读成NA ufo<-read.delim('ufo_awesome.tsv',sep='\t',stringsAsFactors

Machine Learning for hackers读书笔记(七)优化:密码破译

#凯撒密码:将每一个字母替换为字母表中下一位字母,比如a变成b. english.letters <- c('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z') caesar.cipher <- list() inverse.caesar.cipher <- list() #加密LIS

Probabilistic Programming and Bayesian Methods for Hackers读书笔记

本文为<Probabilistic Programming and Bayesian Methods for Hackers>读书笔记,网页链接为https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers 由于csdn无法编辑公式,以及上传图片麻烦,所以直接上传word 目录 第1章  贝叶斯方法原则及概率编程初步...3 1.1 贝叶斯推断的哲学意义...3 1.

图解HTTP读书笔记(十)

图解HTTP读书笔记(十) Web的攻击技术 HTTP协议本身并不存在安全性问题,因此协议本身几乎不会成为攻击对象.应用HTTP协议的服务器和客户端,以及运行在服务器上的Web应用资源才是攻击目标. 在客户端即可篡改请求 在Web应用中,从浏览器那接收到的HTTP请求的全部内容,都可以在客户端自由的变更.篡改. 在HTTP请求报文内加载攻击代码,就能发起对Web应用的攻击.通过URL查询字段或表单.HTTP首部,Cookie等途径把攻击代码传入,若这时Web应用存在安全漏洞,那内部信息就会遭到窃

Machine Learning第十一周笔记:photo OCR

博客已经迁移至Marcovaldo's blog (http://marcovaldong.github.io/) 刚刚完毕了Cousera上Machine Learning的最后一周课程.这周介绍了machine learning的一个应用:photo OCR(optimal character recognition,光学字符识别),以下将笔记整理在以下. Photo OCR Problem Description and Pipeline 最后几小节介绍机器学习的一个应用--photo O