【缓存区】ByteBuffer和IOBuffer你要了解的常用知识

mina中IOBuffer是Nio中ByteBuffer的衍生类,主要是解决Bytebuffer的两个不足,1.不能自动扩展容量 2.提供更加丰富的数据类型操作支持

1.先来学习下ByteBuffer你要了解的东西
摘自 http://blackbeans.iteye.com/blog/836103
这是一篇好文章,对ByteBuff讲的很清楚

查看ByteBuffer的API,看的我是一头雾水,搞不清什么mark、position、limit、flip、reset几个的用法,先看下面的例子:
Java代码 收藏代码

String str = "helloWorld";
ByteBuffer buff = ByteBuffer.wrap(str.getBytes());
System.out.println("position:"+buff.position()+"\t limit:"+buff.limit());
//读取两个字节
buff.get();
buff.get();
System.out.println("position:"+ buff.get(buff.position())+"\t limit:"+buff.limit());
buff.mark();
System.out.println("position:"+buff.position()+"\t limit:"+buff.limit());
buff.flip();
System.out.println("position:"+buff.position()+"\t limit:"+buff.limit());<span style="white-space: pre;"> </span>

Java代码 收藏代码

<pre name="code" class="java">输出结果:
position:0 limit:10
position:2 limit:10
position:2 limit:10
position:0 limit:2
</pre>

我们以每位开发人员熟悉的”helloworld“,用ByteBuffer将字符串包装,由于ByteBuffer是一个抽象类,通过wrap包装的对象将实际返回的是一个HeapByteBuffer对象。由此可知HeapByteBuffer是ByteBuffer的子类,同样的ByteBuffer又是Buffer抽象类的子类。以上提到的mark、position、limit、flip、reset都是出自于Buffer这个抽象类。
下面我们来解析几个方法的,当我们调用了wrap方法后Buffer中初始化的结构是:
注释:
m:mark;
p:position;
L:limit;

初始情况下mark是指向第一个元素之前的的即-1,postion为指向第一个元素为0.而Limit是被赋值为byte[]的长度。
因此这就是打印结果的第一行。
m p L
-1 0 1 2 3 4 5 6 7 8 9
H E L L O W O R L D
当我们连续调用两次get()方法获得两个个字节,每次调用都会触发position++操作,那么此时position就会移动到index = 2的的地方,而这个时候Limit和mark是不会发生变化的。如果将读取的两个字节打印会是H和E,因此执行结果第二行会有position:2 limit:10结果.
m、p L
-1 0 1 2 3 4 5 6 7 8 9
H E L L O W O R L D
读取完毕后我们使用mark,这个时候mark会从-1移动到2和position指向同一个元素,可以看见Limit是不会发生改变的。
m p L
-1 0 1 2 3 4 5 6 7 8 9
H E L L O W O R L D
使用了mark标记的当前的position后,如果们调用flip,这个时候Limit就会指向position的位置,并将mark和position还原为初始值。这样就知道了limit当前的就为2,什么意思呢?就是说当前可以读的字节数是2。
我们可以尝试一下如下代码:

Java代码 收藏代码

System.out.println((char)buff.get()+""+(char)buff.get());

输出结果:he
貌似这也没什么稀奇的,如果你在代码换成

Java代码 收藏代码

// System.out.println((char)buff.get()+""+(char)buff.get()
System.out.println((char)buff.get()+""+(char)buff.get()+""+(char)buff.get());

Java代码 收藏代码

输出结果:<pre name="code" class="java">position:0 limit:10
Exception in thread "main" java.nio.BufferUnderflowException
at java.nio.Buffer.nextGetIndex(Buffer.java:474)
at java.nio.HeapByteBuffer.get(HeapByteBuffer.java:117)
at com.taobao.moxing.notify.Main.main(Main.java:33)position:2 limit:10
position:2 limit:10
position:0 limit:2
</pre>

为什么会抛异常呢?原因是limit的含义就想一个窗口,你当前能读到的数据就是当前窗口限制的(本例中即为2),如果这个窗口之外的所有元素都是不可读的。至此我想你和我就应该明白这几个参数的含义了吧。
而至于reset方法,它是将当前的position设置为0,
rewind是将mark重置为-1,position重置为0;
clear方法是真正的重置,将mark=-1,position=0,limit=capacity(即当前buffer的容量)

2.看看IOBuffer我们需要了解的东西,摘自http://www.360doc.com/content/12/0410/15/9184201_202487090.shtml Apache Mina Server 2.0 中文参考手册

(7.)IoBuffer:

这个接口是对JAVA NIO 的ByteBuffer 的封装,这主要是因为ByteBuffer 只提供了对基本

数据类型的读写操作,没有提供对字符串等对象类型的读写方法,使用起来更为方便,另外,

ByteBuffer 是定长的,如果想要可变,将很麻烦。IoBuffer 的可变长度的实现类似于

StringBuffer。IoBuffer 与ByteBuffer 一样,都是非线程安全的。本节的一些内容如果不

清楚,可以参考java.nio.ByteBuffer 接口。

这个接口有如下常用的方法:

A. static IoBuffer allocate(int capacity,boolean useDirectBuffer):

这个方法内部通过SimpleBufferAllocator 创建一个实例,第一个参数指定初始化容量,第

二个参数指定使用直接缓冲区还是JAVA 内存堆的缓存区,默认为false。

B. void free():

释放缓冲区,以便被一些IoBufferAllocator 的实现重用,一般没有必要调用这个方法,除

非你想提升性能(但可能未必效果明显)。

C. IoBuffer setAutoExpand(boolean autoExpand):

这个方法设置IoBuffer 为自动扩展容量,也就是前面所说的长度可变,那么可以看出长度

可变这个特性默认是不开启的。

D. IoBuffer setAutoShrink(boolean autoShrink):

这个方法设置IoBuffer 为自动收缩,这样在compact()方法调用之后,可以裁减掉一些没

有使用的空间。如果这个方法没有被调用或者设置为false,你也可以通过调用shrink()

方法手动收缩空间。

E. IoBuffer order(ByteOrder bo):

这个方法设置是Big Endian 还是Little Endian,JAVA 中默认是Big Endian,C++和其他

语言一般是Little Endian。

F. IoBuffer asReadOnlyBuffer():

这个方法设置IoBuffer 为只读的。

G. Boolean prefixedDataAvailable(int prefixLength,int maxDataLength):

这个方法用于数据的最开始的1、2、4 个字节表示的是数据的长度的情况,prefixLentgh

表示这段数据的前几个字节(只能是1、2、4 的其中一个)的代表的是这段数据的长度,

maxDataLength 表示最多要读取的字节数。返回结果依赖于等式

remaining()-prefixLength>=maxDataLength,也就是总的数据-表示长度的字节,剩下的字

节数要比打算读取的字节数大或者相等。

H. String getPrefixedString(int prefixLength,CharsetDecoder decoder):

如果上面的方法返回true,那么这个方法将开始读取表示长度的字节之后的数据,注意要

保持这两个方法的prefixLength 的值是一样的。

G、H 两个方法在后面讲到的PrefixedStringDecoder 中的内部实现使用。

IoBuffer 剩余的方法与ByteBuffer 都是差不多的,额外增加了一些便利的操作方法,例如:

IoBuffer putString(String value,CharsetEncoder encoder)可以方便的以指定的编码方

式存储字符串、InputStream asInputStream()方法从IoBuffer 剩余的未读的数据中转为

输入流等。

时间: 2024-11-12 07:10:02

【缓存区】ByteBuffer和IOBuffer你要了解的常用知识的相关文章

IntelliJ IDEA修改Output输出缓存区大小【应对:too much output to process】

IntelliJ IDEA默认的Output输出缓存区大小只有1024KB,超过大小限制的就会被清除,而且还会显示[too much output to process],可通过如下配置界面进行修改(Settings→Editor→Console),单位为KB 如果需要禁用缓存区大小限制就需要修改配置文件idea.properties 配置文件中原有设置: #---------------------------------------------------------------------

ACM/ICPC 之 优先级队列+设置IO缓存区(TSH OJ-Schedule(任务调度))

一个裸的优先级队列(最大堆)题,但也有其他普通队列的做法.这道题我做了两天,结果发现是输入输出太过频繁,一直只能A掉55%的数据,其他都是TLE,如果将输入输出的数据放入缓存区,然后满区输出,可以将IO时间消耗降到很低. 任务调度(Schedule) 描述 某高性能计算集群(HPC cluster)采用的任务调度器与众不同.为简化起见,假定该集群不支持多任务同时执行,故同一时刻只有单个任务处于执行状态.初始状态下,每个任务都由称作优先级数的一个整数指定优先级,该数值越小优先级越高:若优先级数相等

调优5(SGA其他缓存区调整)

第五章 SGA其他缓存区调整 一.redo log buffer 1.redo log 的功能1)Sever 进程在buffer cache修改数据块后,Oracle提倡'先记后写',对修改的数据块的改变生成log entries(日志条目),将日志条目按顺序写入log buffer:而对于脏块 先链接到检查点队列,等待dbwr 进程写入到datafile2) 进程会及时的将其按顺序写入到redo log files.(日志条目的数据块大小一般和操作系统数据块大小一致,在Unix 和linux

JAVA之旅(十七)——StringBuffer的概述,存储,删除,获取,修改,反转,将缓存区的数据存储到数组中,StringBuilder

JAVA之旅(十七)--StringBuffer的概述,存储,删除,获取,修改,反转,将缓存区的数据存储到数组中,StringBuilder 讲完String,我们来聊聊他的小兄弟 一.StringBuffer概述 关于StringBuffer这个对象,Buffer是什么意思?缓冲区的意思,String一旦初始化时不可以被改变的,而StringBuffer是可以的,这就是区别,特点: StringBuffer是一个容器 可以字节操作多个数据类型 最终会通过toString方法变成字符串 存储 S

git --如何撤销已放入缓存区(Index区)的修改

修改或新增的文件通过 git add --all 命令全部加入缓存区(index区)之后,使用 git status 查看状态(git status -s 简单模式查看状态,第一列本地库和缓存区的差异,第二列缓存区和工作目录的差异),提示使用 git reset HEAD <file> 来取消缓存区的修改. 不添加<file>参数,撤销所有缓存区的修改. 另外可以使用 git rm --cached 文件名 ,可以从缓存区移除文件,使该文件变为未跟踪的状态,同时下次提交时从本地库中

缓存区溢出攻击实验(3)

缓存区溢出攻击实验(3) 本实验预计分 3 个小实验来做,本文是第三个实验. 缓存区溢出攻击实验(1) 缓存区溢出攻击实验(2) 缓存区溢出攻击实验(3) 本实验跪谢大神 YSunLIN 的帮助与指导 ~ 不保证成功,一切皆有可能 ~ 背景介绍 请参照实验(1)(2). 实验目的 最终目的:只给一个需要输入正确的序列号才能验证通过的exe可执行文件,要求在不知道源代码的情况下利用缓存区溢出攻击来破解该exe文件. 注意!!! 不知道源代码的情况下 不知道源代码的情况下 不知道源代码的情况下 现实

缓存区溢出的基本原理

缓存区溢出是由于当被被溢出程序/系统调用类似于read().sprintf()\strcpy()等函数时向程序的内存空间中写入字符串,一般程序会将其放入堆或栈数据结构中 .若其对写入数据大小没有严格限制,则可能引起数据覆盖函数调用时压栈的esp栈顶指针及eip返回值,通过精心设计的写入数据,可以控制其返回值从而达到夺取控制权的效果. 由于我们的程序是以字符串的形式写入内存,所以 应避免空字符00的出现(函数会将其识别为结束字符串‘\0’,从而将我们构造的shellcode从中间截断.)但有时我们

缓存区溢出检测工具BED

缓存区溢出(Buffer Overflow)是一类常见的漏洞,广泛存在于各种操作系统和软件中.利用缓存区溢出漏洞进行攻击,会导致程序运行失败.系统崩溃.渗透测试人员利用这类漏洞,可以获取系统权限,远程执行命令等.Kali Linux提供的BED工具(Bruteforce Exploit Detector)是一款缓存区漏洞检测工具.它预置了十一种插件.这些插件针对不同的服务或系统,如FTP.SMTP.POP等.同时,这些插件内包含了已知的各种攻击载荷. BED通过加载插件,向目标主机发送攻击数据.

刷新缓存区方式和刷新内存到磁盘方式总结。

首先聊这个话题,我们先了解两个函数: 1.printf函数 2.write函数 一.首先了解缓冲区的概念,Linux下的缓冲区分为以下三种: 1.全缓冲,顾名思义,除非你主动刷新缓冲区,不然只能等到缓冲区满,才能刷新缓冲区.比如写入磁盘. 2.行缓冲,当遇到'\n'时,刷新缓冲区,比如 C库函数. 3.无缓冲,接受多少给多少,比如stderr. 今天主要讲述的是行缓冲,如果想在不使用'\n'的情况下刷新缓存区,有下列手段-- 1.fflush()函数. 函数原型:int fflush(FILE