POJ 3177 Redundant Paths(无向图缩点)

Description:

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input:

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output:

Line 1: A single integer that is the number of new paths that must be built.

Sample Input:

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output:

2

Hint:

Explanation of the sample:

One visualization of the paths is:

   1   2   3   +---+---+         |   |       |   | 6 +---+---+ 4      / 5     /     /  7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3   +---+---+     :   |   |   :   |   | 6 +---+---+ 4      / 5  :     /     :    /      : 7 + - - - - 

Check some of the routes: 
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 
Every pair of fields is, in fact, connected by two routes.

It‘s possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

题意:有n个点,现在每两个点之间可能已经一条或多条路,如果让每两个点之间最少有两条路,那么最少还需要建几条路。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;

const int N=50010;

struct node
{
    int v, next;
} no[N];
int r[N], be[N], Stack[N], vis[N], head[N], dfn[N], low[N];
bool use[5010][5010];
int ans, Time, top, k;

void Init()
{
    memset(head, -1, sizeof(head));
    memset(dfn, 0, sizeof(dfn));
    memset(low, 0, sizeof(low));
    memset(vis, 0, sizeof(vis));
    memset(r, 0, sizeof(r)); ///r数组存放与第i个点相邻的点与其强连通分量不同的个数

    Time = top = ans = k = 0;
}

void Add(int a, int b)
{
    no[k].v = b;
    no[k].next = head[a];

    head[a] = k++;
}

void Tarjan(int u, int fa)
{
    int v, i;

    Stack[top++] = u;
    vis[u] = 1;
    dfn[u] = low[u] = ++Time;

    for (i = head[u]; i != -1; i = no[i].next)
    {
        v = no[i].v;

        if (!dfn[v])
        {
            Tarjan(v, u);
            low[u] = min(low[u], low[v]);
        }
        else if (v != fa) low[u] = min(low[u], dfn[v]);
    }

    if (dfn[u] == low[u])
    {
        ++ans;
        do
        {
            v = Stack[--top];
            vis[v] = 0;
            be[v] = ans;
        }while(u != v);
    }
}

int main ()
{
    int n, m, a, b, i, j, num;

    while (scanf("%d%d", &n, &m) != EOF)
    {
        Init();
        num = 0;

        while (m--)
        {
            scanf("%d%d", &a, &b);

            if (!use[a][b]) ///去重边
            {
                Add(a, b);
                Add(b, a);
                use[a][b] = use[b][a] = 1;
            }
        }

        Tarjan(1, 1); ///因为任意的两个点都至少有一条边,所以查找一次就行

        for (i = 1; i <= n; i++)
        {
            for (j = head[i]; j != -1; j = no[j].next)
            {
                if (be[i] != be[no[j].v]) ///be数组存放的是该点属于第几个强连通分量
                    r[be[i]]++;
            }
        }

        for (i = 1; i <= ans; i++)
            if (r[i] == 1) num++; ///只有当等于1时,该点才是叶子节点

        printf("%d\n", (num+1)/2); ///让每个叶子节点至少连接两条边,只有这样才能让任意两点之间至少有两条路
    }

    return 0;
}
时间: 2024-10-09 21:42:16

POJ 3177 Redundant Paths(无向图缩点)的相关文章

POJ 3177 Redundant Paths 无向图边双联通基础题

题意: 给一个无向图,保证任意两个点之间有两条完全不相同的路径 求至少加多少边才能实现 题解: 得先学会一波tarjan无向图 桥的定义是:删除这条边之后该图不联通 一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足 DFN(u)<Low(v).(因为 v 想要到达 u 的父亲必须经过(u,v)这条边,所以删去这条边,图不连通) 先用Tarjan无向图缩边双联通分量,这样原图就构成了一颗树, 对于树的叶子节点来说,显然他们需要连边,可以证明的是,我们连至多(叶子节点个数+1)/2的边就

POJ 3352 Road Construction POJ 3177 Redundant Paths(边双连通图 Tarjan+缩点)

POJ 3352 Road Construction POJ 3177 Redundant Paths(边双连通图 Tarjan+缩点) ACM 题目地址: POJ 3352 Road Construction POJ 3177 Redundant Paths 题意: 问要添加几条边才能使所给无向图图变成边双连通图. 分析: 边连通度:使无向图G不连通的最少删边数量为其边连通度. 边双连通图:边连通度大于1的无向图. 首先缩点,让图变成一个DAG. 现在问题转化为:在树中至少添加多少条边能使图变

POJ 3177 Redundant Paths POJ 3352 Road Construction(双连通)

POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的,一份代码能交,给定一个连通无向图,问加几条边能使得图变成一个双连通图 思路:先求双连通,缩点后,计算入度为1的个数,然后(个数 + 1) / 2 就是答案(这题由于是只有一个连通块所以可以这么搞,如果有多个,就不能这样搞了) 代码: #include <cstdio> #include <cstring> #include <algorithm&

tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accepted: 5330 Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the re

poj 3177 Redundant Paths

Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forc

POJ 3177 Redundant Paths(Tarjan)

题目链接 题意 : 一个无向连通图,最少添加几条边使其成为一个边连通分量 . 思路 :先用Tarjan缩点,缩点之后的图一定是一棵树,边连通度为1.然后找到所有叶子节点,即度数为1的节点的个数leaf,最后要添加的边的条数就是(leaf+1)/2 : 1 // 3177 2 #include <cstdio> 3 #include <cstring> 4 #include <iostream> 5 #include <algorithm> 6 7 using

Poj 3352 Road Construction &amp; Poj 3177 Redundant Paths(边双连通分量+缩点)

Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9465   Accepted: 4699 Description It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the ro

poj 3177 Redundant Paths (双联通)

/******************************************************* 题目:Redundant Paths (poj 2177) 链接:http://poj.org/problem?id=3177 算法:双联通+缩点 思路:先找出所有双联通分量,把这些分量缩成一个点 再找出所有度为一的点,用这些点数加一除2就可以了 ********************************************************/ #include<cs

[双连通分量] POJ 3177 Redundant Paths

Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13712   Accepted: 5821 Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the

POJ 3177 Redundant Paths (双连通)

题目地址:POJ 3177 找出各个双连通分量度数为1的点,然后作为叶子节点,那么ans=(叶子结点数+1)/2.需要注意的是有重边. 代码如下: #include <iostream> #include <string.h> #include <math.h> #include <queue> #include <algorithm> #include <stdlib.h> #include <map> #include