Binomial Showdown
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 18457 | Accepted: 5633 |
Description
In how many ways can you choose k elements out of n elements, not taking order into account?
Write a program to compute this number.
Input
The input will contain one or more test cases.
Each test case consists of one line containing two integers n (n>=1) and k (0<=k<=n).
Input is terminated by two zeroes for n and k.
Output
For each test case, print one line containing the required number. This number will always fit into an integer, i.e. it will be less than 231.
Warning: Don‘t underestimate the problem. The result will fit into an integer - but if all intermediate results arising during the computation will also fit into an integer depends on your algorithm. The test cases will go to the limit.
Sample Input
4 2 10 5 49 6 0 0
Sample Output
6 252 13983816
题意:求C(n,m);
思路:这个是其中一种办法,就是连乘r个整商:C(n,k)=C(n,k-1)*(n-k+1)/k。时间复杂度O(n);
#include <stdio.h> #include <math.h> #include <string.h> #include <stdlib.h> #include <iostream> #include <algorithm> #include <set> #include <queue> #include <stack> #include <map> using namespace std; typedef long long LL; LL work(LL n,LL m) { if(m>n/2) m=n-m; LL a=1,b=1; for(int i=1;i<=m;i++){ a*=n-i+1; b*=i; if(a%b==0){ a/=b; b=1; } } return a/b; } int main() { LL n,m; while(~scanf("%lld %lld",&n,&m)){ if(!n&&!m) break; printf("%lld\n",work(n,m)); } return 0; }