解题思路:
区间K覆盖问题:数轴上有一些带权值的区间,选出权和尽量大的一些区间,使得任意一个点最多被K个区间覆盖。
构图方法为:把每一个数作为一个节点,然后对于权值为W的区间[ u, v ]连一条边,容量为1,费用为-w,再对所有相邻
的点连边i -> i + 1,容量为K,费用为0;最后求最左端到最右端的最小费用最大流即可。如果数值范围太大,需要先进行离散化。
#include <iostream> #include <cstring> #include <cstdio> #include <cstdlib> #include <algorithm> #include <vector> #include <queue> #include <stack> #include <set> #include <map> #include <cmath> #define LL long long using namespace std; const int maxn = 500 + 10; const int INF = 0x3f3f3f3f; struct Edge { int from, to, cap, flow, cost; Edge(int u, int v, int c, int f, int w) : from(u), to(v), cap(c), flow(f), cost(w) { } }; int n; vector<Edge>edges; vector<int>G[maxn]; int inq[maxn]; int d[maxn]; int p[maxn]; int a[maxn]; void init() { for(int i=0;i<n;i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap, int cost) { edges.push_back(Edge(from,to,cap,0,cost)); edges.push_back(Edge(to,from,0,0,-cost)); int M = edges.size(); G[from].push_back(M-2); G[to].push_back(M-1); } bool SPFA(int s, int t, int& flow, LL& cost) { for(int i=0;i<=n+1;i++) d[i] = INF; memset(inq, 0, sizeof(inq)); d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF; queue<int>Q; Q.push(s); while(!Q.empty()) { int u = Q.front();Q.pop(); inq[u] = 0; for(int i=0;i<G[u].size();i++) { Edge& e = edges[G[u][i]]; if(e.cap > e.flow && d[e.to] > d[u] + e.cost) { d[e.to] = d[u] + e.cost; p[e.to] = G[u][i]; a[e.to] = min(a[u], e.cap - e.flow); if(!inq[e.to]){Q.push(e.to);inq[e.to] = 1;} } } } if(d[t] == INF) return false; flow += a[t]; cost += (LL) d[t] * (LL) a[t]; for(int u=t;u!=s;u=edges[p[u]].from) { edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; } return true; } int MincostMaxflow(int s, int t, LL& cost) { int flow = 0; cost = 0; while(SPFA(s,t,flow,cost)); return flow; } struct Node { int a; int p; bool operator < (const Node &rhs)const { return a < rhs.a; } }li[maxn]; struct edge { int u, v,w; }ee[maxn]; int main() { int T, N, K; scanf("%d", &T); while(T--) { scanf("%d%d", &N, &K); int u, v, w; for(int i=1;i<=N;i++) { scanf("%d%d%d", &u, &v, &w); li[2*i-1].a = u; li[2*i-1].p = -i; li[2*i].a = v; li[2*i].p= i; ee[i].u=u; ee[i].v=v; ee[i].w=w; } sort(li+1, li + 1 +2* N); int tmp = li[1].a,c = 1; for(int i=1;i<=2*N;i++) { if(li[i].a != tmp) { c++; tmp = li[i].a; } if(li[i].p > 0) { ee[li[i].p].v = c; } else ee[-li[i].p].u = c; } n = c + 1; init(); for(int i=0;i<c;i++) AddEdge(i,i+1,K,0); for(int i=1;i<=N;i++) AddEdge(ee[i].u,ee[i].v,1,-ee[i].w); LL cost = 0; int ans = MincostMaxflow(0,c,cost); printf("%lld\n",-cost); } return 0; }
时间: 2024-10-03 11:03:07