Java版SMS4加密算法

SMS4简介:

本算法是一个分组算法。该算法的分组长度为128比特,密钥长度为128比特,也就是16个字节。加密算法与密钥扩展算法都采用32轮非线性迭代结构。解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。所有在SMS4的基础类中,你会看到加密和解密的基础函数是同一个,只是需要一个int型的标志位来判断是加密还是解密。

SMS4加密算法基础类:

public class SMS4 {

    private static final int ENCRYPT = 1;
    private static final int DECRYPT = 0;
    public static final int ROUND = 32;
    private static final int BLOCK = 16;

    private byte[] Sbox = { (byte) 0xd6, (byte) 0x90, (byte) 0xe9, (byte) 0xfe,
            (byte) 0xcc, (byte) 0xe1, 0x3d, (byte) 0xb7, 0x16, (byte) 0xb6,
            0x14, (byte) 0xc2, 0x28, (byte) 0xfb, 0x2c, 0x05, 0x2b, 0x67,
            (byte) 0x9a, 0x76, 0x2a, (byte) 0xbe, 0x04, (byte) 0xc3,
            (byte) 0xaa, 0x44, 0x13, 0x26, 0x49, (byte) 0x86, 0x06,
            (byte) 0x99, (byte) 0x9c, 0x42, 0x50, (byte) 0xf4, (byte) 0x91,
            (byte) 0xef, (byte) 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43,
            (byte) 0xed, (byte) 0xcf, (byte) 0xac, 0x62, (byte) 0xe4,
            (byte) 0xb3, 0x1c, (byte) 0xa9, (byte) 0xc9, 0x08, (byte) 0xe8,
            (byte) 0x95, (byte) 0x80, (byte) 0xdf, (byte) 0x94, (byte) 0xfa,
            0x75, (byte) 0x8f, 0x3f, (byte) 0xa6, 0x47, 0x07, (byte) 0xa7,
            (byte) 0xfc, (byte) 0xf3, 0x73, 0x17, (byte) 0xba, (byte) 0x83,
            0x59, 0x3c, 0x19, (byte) 0xe6, (byte) 0x85, 0x4f, (byte) 0xa8,
            0x68, 0x6b, (byte) 0x81, (byte) 0xb2, 0x71, 0x64, (byte) 0xda,
            (byte) 0x8b, (byte) 0xf8, (byte) 0xeb, 0x0f, 0x4b, 0x70, 0x56,
            (byte) 0x9d, 0x35, 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, (byte) 0xd1,
            (byte) 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, (byte) 0x87,
            (byte) 0xd4, 0x00, 0x46, 0x57, (byte) 0x9f, (byte) 0xd3, 0x27,
            0x52, 0x4c, 0x36, 0x02, (byte) 0xe7, (byte) 0xa0, (byte) 0xc4,
            (byte) 0xc8, (byte) 0x9e, (byte) 0xea, (byte) 0xbf, (byte) 0x8a,
            (byte) 0xd2, 0x40, (byte) 0xc7, 0x38, (byte) 0xb5, (byte) 0xa3,
            (byte) 0xf7, (byte) 0xf2, (byte) 0xce, (byte) 0xf9, 0x61, 0x15,
            (byte) 0xa1, (byte) 0xe0, (byte) 0xae, 0x5d, (byte) 0xa4,
            (byte) 0x9b, 0x34, 0x1a, 0x55, (byte) 0xad, (byte) 0x93, 0x32,
            0x30, (byte) 0xf5, (byte) 0x8c, (byte) 0xb1, (byte) 0xe3, 0x1d,
            (byte) 0xf6, (byte) 0xe2, 0x2e, (byte) 0x82, 0x66, (byte) 0xca,
            0x60, (byte) 0xc0, 0x29, 0x23, (byte) 0xab, 0x0d, 0x53, 0x4e, 0x6f,
            (byte) 0xd5, (byte) 0xdb, 0x37, 0x45, (byte) 0xde, (byte) 0xfd,
            (byte) 0x8e, 0x2f, 0x03, (byte) 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b,
            0x51, (byte) 0x8d, 0x1b, (byte) 0xaf, (byte) 0x92, (byte) 0xbb,
            (byte) 0xdd, (byte) 0xbc, 0x7f, 0x11, (byte) 0xd9, 0x5c, 0x41,
            0x1f, 0x10, 0x5a, (byte) 0xd8, 0x0a, (byte) 0xc1, 0x31,
            (byte) 0x88, (byte) 0xa5, (byte) 0xcd, 0x7b, (byte) 0xbd, 0x2d,
            0x74, (byte) 0xd0, 0x12, (byte) 0xb8, (byte) 0xe5, (byte) 0xb4,
            (byte) 0xb0, (byte) 0x89, 0x69, (byte) 0x97, 0x4a, 0x0c,
            (byte) 0x96, 0x77, 0x7e, 0x65, (byte) 0xb9, (byte) 0xf1, 0x09,
            (byte) 0xc5, 0x6e, (byte) 0xc6, (byte) 0x84, 0x18, (byte) 0xf0,
            0x7d, (byte) 0xec, 0x3a, (byte) 0xdc, 0x4d, 0x20, 0x79,
            (byte) 0xee, 0x5f, 0x3e, (byte) 0xd7, (byte) 0xcb, 0x39, 0x48 };

    private int[] CK = { 0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
            0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9, 0xe0e7eef5,
            0xfc030a11, 0x181f262d, 0x343b4249, 0x50575e65, 0x6c737a81,
            0x888f969d, 0xa4abb2b9, 0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d,
            0x141b2229, 0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
            0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209, 0x10171e25,
            0x2c333a41, 0x484f565d, 0x646b7279 };

    private int Rotl(int x, int y) {
        return x << y | x >>> (32 - y);
    }

    private int ByteSub(int A) {
        return (Sbox[A >>> 24 & 0xFF] & 0xFF) << 24
                | (Sbox[A >>> 16 & 0xFF] & 0xFF) << 16
                | (Sbox[A >>> 8 & 0xFF] & 0xFF) << 8 | (Sbox[A & 0xFF] & 0xFF);
    }

    private int L1(int B) {
        return B ^ Rotl(B, 2) ^ Rotl(B, 10) ^ Rotl(B, 18) ^ Rotl(B, 24);
        // return B^(B<<2|B>>>30)^(B<<10|B>>>22)^(B<<18|B>>>14)^(B<<24|B>>>8);
    }

    private int L2(int B) {
        return B ^ Rotl(B, 13) ^ Rotl(B, 23);
        // return B^(B<<13|B>>>19)^(B<<23|B>>>9);
    }

    void SMS4Crypt(byte[] Input, byte[] Output, int[] rk) {
        int r, mid, x0, x1, x2, x3;
        int[] x = new int[4];
        int[] tmp = new int[4];
        for (int i = 0; i < 4; i++) {
            tmp[0] = Input[0 + 4 * i] & 0xff;
            tmp[1] = Input[1 + 4 * i] & 0xff;
            tmp[2] = Input[2 + 4 * i] & 0xff;
            tmp[3] = Input[3 + 4 * i] & 0xff;
            x[i] = tmp[0] << 24 | tmp[1] << 16 | tmp[2] << 8 | tmp[3];
            // x[i]=(Input[0+4*i]<<24|Input[1+4*i]<<16|Input[2+4*i]<<8|Input[3+4*i]);
        }
        for (r = 0; r < 32; r += 4) {
            mid = x[1] ^ x[2] ^ x[3] ^ rk[r + 0];
            mid = ByteSub(mid);
            x[0] = x[0] ^ L1(mid); // x4

            mid = x[2] ^ x[3] ^ x[0] ^ rk[r + 1];
            mid = ByteSub(mid);
            x[1] = x[1] ^ L1(mid); // x5

            mid = x[3] ^ x[0] ^ x[1] ^ rk[r + 2];
            mid = ByteSub(mid);
            x[2] = x[2] ^ L1(mid); // x6

            mid = x[0] ^ x[1] ^ x[2] ^ rk[r + 3];
            mid = ByteSub(mid);
            x[3] = x[3] ^ L1(mid); // x7
        }

        // Reverse
        for (int j = 0; j < 16; j += 4) {
            Output[j] = (byte) (x[3 - j / 4] >>> 24 & 0xFF);
            Output[j + 1] = (byte) (x[3 - j / 4] >>> 16 & 0xFF);
            Output[j + 2] = (byte) (x[3 - j / 4] >>> 8 & 0xFF);
            Output[j + 3] = (byte) (x[3 - j / 4] & 0xFF);
        }
    }

    private void SMS4KeyExt(byte[] Key, int[] rk, int CryptFlag) {
        int r, mid;
        int[] x = new int[4];
        int[] tmp = new int[4];
        for (int i = 0; i < 4; i++) {
            tmp[0] = Key[0 + 4 * i] & 0xFF;
            tmp[1] = Key[1 + 4 * i] & 0xff;
            tmp[2] = Key[2 + 4 * i] & 0xff;
            tmp[3] = Key[3 + 4 * i] & 0xff;
            x[i] = tmp[0] << 24 | tmp[1] << 16 | tmp[2] << 8 | tmp[3];
            // x[i]=Key[0+4*i]<<24|Key[1+4*i]<<16|Key[2+4*i]<<8|Key[3+4*i];
        }
        x[0] ^= 0xa3b1bac6;
        x[1] ^= 0x56aa3350;
        x[2] ^= 0x677d9197;
        x[3] ^= 0xb27022dc;
        for (r = 0; r < 32; r += 4) {
            mid = x[1] ^ x[2] ^ x[3] ^ CK[r + 0];
            mid = ByteSub(mid);
            rk[r + 0] = x[0] ^= L2(mid); // rk0=K4

            mid = x[2] ^ x[3] ^ x[0] ^ CK[r + 1];
            mid = ByteSub(mid);
            rk[r + 1] = x[1] ^= L2(mid); // rk1=K5

            mid = x[3] ^ x[0] ^ x[1] ^ CK[r + 2];
            mid = ByteSub(mid);
            rk[r + 2] = x[2] ^= L2(mid); // rk2=K6

            mid = x[0] ^ x[1] ^ x[2] ^ CK[r + 3];
            mid = ByteSub(mid);
            rk[r + 3] = x[3] ^= L2(mid); // rk3=K7
        }

        // 解密时轮密钥使用顺序:rk31,rk30,...,rk0
        if (CryptFlag == DECRYPT) {
            for (r = 0; r < 16; r++) {
                mid = rk[r];
                rk[r] = rk[31 - r];
                rk[31 - r] = mid;
            }
        }
    }

    public int sms4(byte[] in, int inLen, byte[] key, byte[] out, int CryptFlag) {
        int point = 0;
        int[] round_key = new int[ROUND];
        // int[] round_key={0};
        SMS4KeyExt(key, round_key, CryptFlag);
        byte[] input = new byte[16];
        byte[] output = new byte[16];

        while (inLen >= BLOCK) {
            input = Arrays.copyOfRange(in, point, point + 16);
            // output=Arrays.copyOfRange(out, point, point+16);
            SMS4Crypt(input, output, round_key);
            System.arraycopy(output, 0, out, point, BLOCK);
            inLen -= BLOCK;
            point += BLOCK;
        }

        return 0;
    }
}

封装对外接口:

基于这个基本类,对其进行封装接口,主要接口如下:

private static byte[] encode16(byte[] plain, byte[] key);
private static byte[] decode16(byte[] cipher, byte[] key);
private static byte[] encode32(byte[] plain, byte[] key);
private static byte[] decode32(byte[] cipher, byte[] key);
public static byte[] encodeSMS4(byte[] plain, byte[] key);
public static byte[] decodeSMS4(byte[] cipher, byte[] key);
public static String decodeSMS4toString(byte[] cipher, byte[] key);

encode16(byte[], byte[])是针对16位明文和16位密钥进行加密的接口;

private static byte[] decode16(byte[] cipher, byte[] key):是针对16位密文和16位密钥进行解密的接口;

private static byte[] encode32(byte[] plain, byte[] key):是针对32位明文和16位密钥进行加密的接口;

private static byte[] decode32(byte[] cipher, byte[] key):是针对32位密文和16位密钥进行解密的接口;

public static byte[] encodeSMS4(byte[] plain, byte[] key):是针对不限字节数的明文和16位密钥进行加密的接口;

public static byte[] decodeSMS4(byte[] cipher, byte[] key):是针对不限字节数的密文和16位密钥进行解密的接口;

public static String decodeSMS4toString(byte[] cipher, byte[] key):是针对不限字节数的密文和16位密钥进行解密的接口;

使用示范:

// 密钥
        byte[] key = { 0x01, 0x23, 0x45, 0x67, (byte) 0x89, (byte) 0xab,
                (byte) 0xcd, (byte) 0xef, (byte) 0xfe, (byte) 0xdc,
                (byte) 0xba, (byte) 0x98, 0x76, 0x54, 0x32, 0x10 };

        String newString = "Coding,你好!"; // 明文

        byte[] enOut = SMS4.encodeSMS4(newString, key);
        if (enOut == null) {
            return;
        }

        System.out.println("加密结果:");
        printBit(enOut);

        byte[] deOut = SMS4.decodeSMS4(enOut, key);
        System.out.println("\n解密结果(return byte[]):");
        printBit(deOut);

        String deOutStr = SMS4.decodeSMS4toString(enOut, key);
        System.out.println("\n解密结果(return String):\n" + deOutStr);

示例Demo连接:

http://download.csdn.net/detail/u013761665/8357917

时间: 2024-10-19 09:41:35

Java版SMS4加密算法的相关文章

TEA加密算法java版

这个算法简单,而且效率高,每次可以操作8个字节的数据,加密解密的KEY为16字节,即包含4个int数据的int型数组,加密轮数应为8的倍数,一般比较常用的轮数为64,32,16,推荐用64轮. 源代码如下:/** *//*** Tea算法* 每次操作可以处理8个字节数据* KEY为16字节,应为包含4个int型数的int[],一个int为4个字节* 加密解密轮数应为8的倍数,推荐加密轮数为64轮* */public class Tea {//加密public byte[] encrypt(byt

微博URL短网址生成算法原理及(java版、php版实现实例)

短网址(Short URL),顾名思义就是在形式上比较短的网址.通常用的是asp或者php转向,在Web 2.0的今天,不得不说,这是一个潮流.目前已经有许多类似服务,借助短网址您可以用简短的网址替代原来冗长的网址,让使用者可以更容易的分享链接. 例如:http://t.cn/SzjPjA 短网址服务,可能很多朋友都已经不再陌生,现在大部分微博.手机邮件提醒等地方已经有很多应用模式了,并占据了一定的市场.估计很多朋友现在也正在使用. 看过新浪的短连接服务,发现后面主要有6个字符串组成,于是第一个

区块链项目实战视频课程(Java版)

区块链项目实战视频课程(Java版)网盘地址:https://pan.baidu.com/s/1EiONxCp7JBw6GJKhjK_zHQ 提取码:tzr1备用地址(腾讯微云):https://share.weiyun.com/5al0zSz 密码:3rgeye 本课程是基于java语言的区块链实战教程.目的是让更多的java编程者了解区块链,掌握区块链开发. 区块链是分布式数据存储.点对点传输.共识机制.加密算法等计算机技术的新型应用模式. 区块链(Blockchain)是比特币的一个重要概

排序算法Java版,以及各自的复杂度,以及由堆排序产生的top K问题

常用的排序算法包括: 冒泡排序:每次在无序队列里将相邻两个数依次进行比较,将小数调换到前面, 逐次比较,直至将最大的数移到最后.最将剩下的N-1个数继续比较,将次大数移至倒数第二.依此规律,直至比较结束.时间复杂度:O(n^2) 选择排序:每次在无序队列中"选择"出最大值,放到有序队列的最后,并从无序队列中去除该值(具体实现略有区别).时间复杂度:O(n^2) 直接插入排序:始终定义第一个元素为有序的,将元素逐个插入到有序排列之中,其特点是要不断的 移动数据,空出一个适当的位置,把待插

Java版贪吃蛇(比较完善的版本)

很认真的写的一个java版的贪吃蛇游戏,图形界面,支持菜单操作,键盘监听,可加速,减速,统计得分,设定运动速度,设定游戏背景颜色等!应该没有Bug了,因为全被我修改没了.哈哈. 下面是项目各包及类的层次关系: 游戏的主要运行界面截图如下: 下面是部分代码,详细源码见此链接:http://pan.baidu.com/s/1bnubnzh //Snake类: package com.huowolf.entities; import java.awt.Color; import java.awt.Gr

回溯算法解八皇后问题(java版)

八皇后问题是学习回溯算法时不得不提的一个问题,用回溯算法解决该问题逻辑比较简单. 下面用java版的回溯算法来解决八皇后问题. 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 思路是按行来规定皇后,第一行放第一个皇后,第二行放第二个,然后通过遍历所有列,来判断下一个皇后能否放在该列.直到所有皇后都放完,或者放哪

pureMVC java版搭建流程

转自:http://blog.csdn.net/sutaizi/article/details/6588004 pureMVC 是一个轻量级的框架 它在 flex中非常流行(和cairngorm差不多火) 目前几乎已经移植到所有平台上. 下面实现java版得pureMVC搭建 先给大家看总体的层次: 众所周知 pureMVC是一个轻量级的MVC框架 分为 Model ,View ,Controller.这三个是pureMVC的核心. 除此之外pureMVC中含有一个单例模式Facade.faca

AKKA文档(java版)

目前我正在翻译AKKA官网文档.翻译:吴京润 译者注:本人正在翻译AKKA官网文档,本篇是文档第一章,欢迎有兴趣的同学加入一起翻译.更多内容请读这里:https://tower.im/projects/ac49db18a6a24ae4b340a5fa22d930dc/lists/ded96c34f7ce4a6bb8b5473f596e1008/show/https://tower.im/projects/ac49db18a6a24ae4b340a5fa22d930dc/todos/640e53d

应用程序初次运行数据库配置小程序(Java版)

应用程序初始化数据库配置小程序 之前写过一个Java版的信息管理系统,但部署系统的时候还需要手动的去配置数据库和导入一些初始化的数据才能让系统运行起来,所以我在想是不是可以写一个小程序在系统初次运行的时候自动部署数据库和导入一些初始化数据.然后就有了以下的思路: 在应用程序入口处判断数据库是否已经配置完成,若配置完成则进入正常的登录系统完成正常操作即可,若未配置则进入数据库配置的小程序完成数据库配置然后再进入系统,但如何来判断是否已经配置完成呢,在这里我用的是比较原始的方法,配置数据库的时候系统