B. Mr. Kitayuta‘s Colorful Graph
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
Mr. Kitayuta has just bought an undirected graph consisting of n vertices and m edges.
The vertices of the graph are numbered from 1 to n. Each edge, namely edge i,
has a color ci,
connecting vertex ai and bi.
Mr. Kitayuta wants you to process the following q queries.
In the i-th query, he gives you two integers — ui and vi.
Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and
vertex vi directly
or indirectly.
Input
The first line of the input contains space-separated two integers — n and m (2?≤?n?≤?100,?1?≤?m?≤?100),
denoting the number of the vertices and the number of the edges, respectively.
The next m lines contain space-separated three integers — ai, bi (1?≤?ai?<?bi?≤?n)
and ci (1?≤?ci?≤?m).
Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i?≠?j, (ai,?bi,?ci)?≠?(aj,?bj,?cj).
The next line contains a integer — q (1?≤?q?≤?100),
denoting the number of the queries.
Then follows q lines, containing space-separated two integers — ui and vi (1?≤?ui,?vi?≤?n).
It is guaranteed that ui?≠?vi.
Output
For each query, print the answer in a separate line.
Sample test(s)
input
4 5 1 2 1 1 2 2 2 3 1 2 3 3 2 4 3 3 1 2 3 4 1 4
output
2 1 0
input
5 7 1 5 1 2 5 1 3 5 1 4 5 1 1 2 2 2 3 2 3 4 2 5 1 5 5 1 2 5 1 5 1 4
output
1 1 1 1 2
Note
Let‘s consider the first sample.
The figure above shows the first sample.
- Vertex 1 and vertex 2 are connected by color 1 and 2.
- Vertex 3 and vertex 4 are connected by color 3.
- Vertex 1 and vertex 4 are not connected by any single color.
解决方案:题目求的是先建立一个图,有很多种不同颜色的边,每次询问两条边的不同颜色的路径的个数。由此联想的floyd算法,可以枚举边的颜色,求每种颜色的最短路,然后在统计不同颜色的最短路的个数。
code:
<pre name="code" class="cpp">#include <iostream> #include<cstdio> #include<cstring> using namespace std; int Mat[102][102][102]; int main() { int n,m; while(~scanf("%d%d",&n,&m)) { memset(Mat,0,sizeof(Mat)); for(int i=1; i<=m; i++) { int a,b,c; scanf("%d%d%d",&a,&b,&c); Mat[a][b][c]=1; Mat[b][a][c]=1; } for(int c=1;c<=m;c++){ for(int k=1;k<=n;k++){ for(int i=1;i<=n;i++) for(int j=1;j<=n;j++){ if(Mat[i][k][c]&&Mat[k][j][c]){ Mat[i][j][c]=1; Mat[j][i][c]=1; } } } } int q; scanf("%d",&q); for(int i=0;i<q;i++){ int a,b; int sum=0; scanf("%d%d",&a,&b); for(int i=1;i<=m;i++){ sum+=Mat[a][b][i]; } printf("%d\n",sum); } } return 0; }
Codeforces Round #286 (Div. 2) B. Mr. Kitayuta's Colorful Graph +foyd算法的应用