题目:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
题意:给出一个二维格子,其中值为1的点表示障碍点,要求求出从最左上角的点到最右下角的点有多少种走法。使用动态规划,对于其中一个点obstacleGrid[i][j](1<i<m,i<j<n),到该点的走法为d(obstacleGrid[i][j])=d(obstacleGrid[i-1][j])+d(obstacleGrid[i][j-1]),对于第一行和第一列,如果该点前面有障碍点,那么到到此点有0中方法,反之为1。遍历数组即可求解。
代码:
public class Solution { public int uniquePathsWithObstacles(int[][] obstacleGrid) { int m=obstacleGrid.length; //行 int n=0; //列 if(m!=0) n=obstacleGrid[0].length; int[][] A=new int[m][n]; //用户记录起点到当前点走法 for(int i=0;i<m;i++){ for(int j=0;j<n;j++){ if(obstacleGrid[i][j]==1) //如果一个点障碍点,则到该点的只有0中方法 A[i][j]=0; else{ if(i==0||j==0){ //如果是第一列或者第一行 ,若该点前面有障碍点,那么改点也是不可以达到的 boolean obstracle=false; if(i==0){ for(int k=0;k<j;k++){ if(obstacleGrid[i][k]==1) obstracle=true; } } else if(j==0){ for(int k=0;k<i;k++){ if(obstacleGrid[k][j]==1) obstracle=true; } } if(obstracle) A[i][j]=0; else A[i][j]=1; }else A[i][j]=A[i-1][j]+A[i][j-1]; } } } return A[m-1][n-1]; } }
时间: 2024-11-18 11:55:01