spark版本定制五:基于案例一节课贯通Spark Streaming流计算框架的运行源码

本期内容:

1、在线动态计算分类最热门商品案例回顾与演示

2、基于案例贯通Spark Streaming的运行源码

一、在线动态计算分类最热门商品案例回顾与演示

案例回顾:

package com.dt.spark.sparkstreaming

import com.robinspark.utils.ConnectionPool
import org.apache.spark.SparkConf
import org.apache.spark.sql.Row
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * 使用Spark Streaming+Spark SQL来在线动态计算电商中不同类别中最热门的商品排名,例如手机这个类别下面最热门的三种手机、电视这个类别
  * 下最热门的三种电视,该实例在实际生产环境下具有非常重大的意义;
  *
  * @author DT大数据梦工厂
  * 新浪微博:http://weibo.com/ilovepains/
  *
  *
  *   实现技术:Spark Streaming+Spark SQL,之所以Spark Streaming能够使用ML、sql、graphx等功能是因为有foreachRDD和Transform
  *   等接口,这些接口中其实是基于RDD进行操作,所以以RDD为基石,就可以直接使用Spark其它所有的功能,就像直接调用API一样简单。
  *   假设说这里的数据的格式:user item category,例如Rocky Samsung Android
  */
object OnlineTheTop3ItemForEachCategory2DB {
  def main(args: Array[String]){
    /**
      * 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息,
      * 例如说通过setMaster来设置程序要链接的Spark集群的Master的URL,如果设置
      * 为local,则代表Spark程序在本地运行,特别适合于机器配置条件非常差(例如
      * 只有1G的内存)的初学者       *
      */
    val conf = new SparkConf() //创建SparkConf对象
    conf.setAppName("OnlineTheTop3ItemForEachCategory2DB") //设置应用程序的名称,在程序运行的监控界面可以看到名称
    conf.setMaster("spark://Master:7077") //此时,程序在Spark集群
    //conf.setMaster("local[2]")
    //设置batchDuration时间间隔来控制Job生成的频率并且创建Spark Streaming执行的入口
    val ssc = new StreamingContext(conf, Seconds(5))

    ssc.checkpoint("/root/Documents/SparkApps/checkpoint")

    val userClickLogsDStream = ssc.socketTextStream("Master", 9999)

    val formattedUserClickLogsDStream = userClickLogsDStream.map(clickLog =>(clickLog.split(" ")(2) + "_" + clickLog.split(" ")(1), 1))

//    val categoryUserClickLogsDStream = formattedUserClickLogsDStream.reduceByKeyAndWindow((v1:Int, v2: Int) => v1 + v2,
//      (v1:Int, v2: Int) => v1 - v2, Seconds(60), Seconds(20))

    val categoryUserClickLogsDStream = formattedUserClickLogsDStream.reduceByKeyAndWindow(_+_,_-_, Seconds(60), Seconds(20))

    categoryUserClickLogsDStream.foreachRDD { rdd => {
      if (rdd.isEmpty()) {
        println("No data inputted!!!")
      } else {
        val categoryItemRow = rdd.map(reducedItem => {
          val category = reducedItem._1.split("_")(0)
          val item = reducedItem._1.split("_")(1)
          val click_count = reducedItem._2
          Row(category, item, click_count)
        })

        val structType = StructType(Array(
          StructField("category", StringType, true),
          StructField("item", StringType, true),
          StructField("click_count", IntegerType, true)
        ))

        val hiveContext = new HiveContext(rdd.context)
        val categoryItemDF = hiveContext.createDataFrame(categoryItemRow, structType)

        categoryItemDF.registerTempTable("categoryItemTable")

        val reseltDataFram = hiveContext.sql("SELECT category,item,click_count FROM (SELECT category,item,click_count,row_number()" +
          " OVER (PARTITION BY category ORDER BY click_count DESC) rank FROM categoryItemTable) subquery " +
          " WHERE rank <= 3")
        reseltDataFram.show()

        val resultRowRDD = reseltDataFram.rdd

        resultRowRDD.foreachPartition { partitionOfRecords => {

          if (partitionOfRecords.isEmpty){
            println("This RDD is not null but partition is null")
          } else {
            // ConnectionPool is a static, lazily initialized pool of connections
            val connection = ConnectionPool.getConnection()
            partitionOfRecords.foreach(record => {
              val sql = "insert into categorytop3(category,item,client_count) values(‘" + record.getAs("category") + "‘,‘" +
                record.getAs("item") + "‘," + record.getAs("click_count") + ")"
              val stmt = connection.createStatement();
              stmt.executeUpdate(sql);

            })
            ConnectionPool.returnConnection(connection) // return to the pool for future reuse

           }
          }
         }
       }
     }
    }
    /**
      * 在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,在JobScheduler
      * 的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法:
      *   1,JobGenerator启动后会不断的根据batchDuration生成一个个的Job
      *   2,ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动ReceiverSupervisor),在Receiver收到
      *   数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker
      *   内部会通过ReceivedBlockTracker来管理接受到的元数据信息
      *   每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD
      *   的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,在JobScheduler中通过线程池的方式找到一个
      *   单独的线程来提交Job到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行),为什么使用线程池呢?
      *   1,作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task有异曲同工之妙;
      *   2,有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持;
      *
      */
    ssc.start()
    ssc.awaitTermination()
  }
}

  

二、基于案例贯通Spark Streaming的运行源码

逐步解析源码:

1.从实例化SteamingContext入手,进入StreamingContext源码 

//设置batchDuration时间间隔来控制Job生成的频率并且创建Spark Streaming执行的入口
val ssc = new StreamingContext(conf, Seconds(5))

def this(conf: SparkConf, batchDuration: Duration) = {this(StreamingContext.createNewSparkContext(conf), null, batchDuration)}

private[streaming] def createNewSparkContext(conf: SparkConf): SparkContext = {  new SparkContext(conf)}

在StreamingContext的构造方法中传入Spark Conf会新建一个SparkContext实例,这说明Streaming是运行在Spark Core 之上的,SparkStreaming就是SparkCore上的一个应用程序!!

2.进入SocketTextStream模块:
val userClickLogsDStream = ssc.socketTextStream("Master", 9999),创建一个socketInputDStream, socketInputDStream中就可以调用GetReceiver来接收数据,

在GetReceiver方法中实例化了SocketReceiver,然后调用了OnStart方法,方法中创建了一个线程,并调用了receive方法,receive中就是具体接收数据的实现。

对应的代码如下:

1.创建socketTextStream

**
 * Create a input stream from TCP source hostname:port. Data is received using
 * a TCP socket and the receive bytes is interpreted as UTF8 encoded `\n` delimited
 * lines.
 * @param hostname      Hostname to connect to for receiving data
 * @param port          Port to connect to for receiving data
 * @param storageLevel  Storage level to use for storing the received objects
 *                      (default: StorageLevel.MEMORY_AND_DISK_SER_2)
 */
def socketTextStream(
    hostname: String,
    port: Int,
    storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
  ): ReceiverInputDStream[String] = withNamedScope("socket text stream") {
  socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel)
}

/**
 * Create a input stream from TCP source hostname:port. Data is received using
 * a TCP socket and the receive bytes it interepreted as object using the given
 * converter.
 * @param hostname      Hostname to connect to for receiving data
 * @param port          Port to connect to for receiving data
 * @param converter     Function to convert the byte stream to objects
 * @param storageLevel  Storage level to use for storing the received objects
 * @tparam T            Type of the objects received (after converting bytes to objects)
 */

def socketStream[T: ClassTag](
    hostname: String,
    port: Int,
    converter: (InputStream) => Iterator[T],
    storageLevel: StorageLevel
  ): ReceiverInputDStream[T] = {
  new SocketInputDStream[T](this, hostname, port, converter, storageLevel)
}

2.SocketInputDStream继承ReceiverInputDStream,实现getReceiver方法,返回SocketReceiver对象

private[streaming]
class SocketInputDStream[T: ClassTag](
    ssc_ : StreamingContext,
    host: String,
    port: Int,
    bytesToObjects: InputStream => Iterator[T],
    storageLevel: StorageLevel
  ) extends ReceiverInputDStream[T](ssc_) {

  def getReceiver(): Receiver[T] = {
    new SocketReceiver(host, port, bytesToObjects, storageLevel)
  }
}

3.SocketInputDStream的继承关系SocketInputDStream->ReceiverInputDStream->InputDStream->DStream如图所示:

 

4.在DStream的子类继承结构中,有个ForEachDStream,这个类是DStream的输出类,数据输出的时候会在ForEachDStream的generateJob方法中创建一个job:

override def generateJob(time: Time): Option[Job] = {
  parent.getOrCompute(time) match {
    case Some(rdd) =>
      val jobFunc= () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
        foreachFunc(rdd, time)
      }
      Some(new Job(time, jobFunc))
    case None=> None
  }
}

我们接下来看getOrCompute方法,从方式注释中可以看出rdd是缓存的:

/**
 * Get the RDD corresponding to the giventime; either retrieve it from cache
 * or compute-and-cache it.
 */
private[streaming] final def getOrCompute(time: Time): Option[RDD[T]] = {
  // If RDD was already generated, then retrieve it fromHashMap,
  // or else compute the RDD
  generatedRDDs.get(time).orElse {
    // Compute the RDD if time is valid (e.g. correct time ina sliding window)
    // of RDD generation, else generatenothing.
    if (isTimeValid(time)){

      val rddOption= createRDDWithLocalProperties(time, displayInnerRDDOps = false) {
        // Disable checks for existing output directories in jobslaunched by the streaming
        // scheduler, since we may needto write output to an existing directory during checkpoint
        // recovery; see SPARK-4835 formore details. We need to have this call here because
        // compute() might cause Sparkjobs to be launched.
        PairRDDFunctions.disableOutputSpecValidation.withValue(true) {
          compute(time)
        }
      }

      rddOption.foreach { case newRDD =>
        // Register the generated RDD for caching andcheckpointing
        if (storageLevel != StorageLevel.NONE) {
          newRDD.persist(storageLevel)
          logDebug(s"Persisting RDD ${newRDD.id} for time $time to $storageLevel")
        }
        if (checkpointDuration != null &&(time - zeroTime).isMultipleOf(checkpointDuration)) {
          newRDD.checkpoint()
          logInfo(s"Marking RDD ${newRDD.id} for time $time for checkpointing")
        }
        generatedRDDs.put(time, newRDD)
      }
      rddOption
    } else {
      None
    }
  }
}

5.从SocketInputDStream到ssc.start()方法之间,全是业务逻辑代码,我们直接进入ssc.start()方法,start()方法会启动StreamContext,由于Spark应用程序不能有多个SparkContext对象实例,所以Spark Streaming框架在启动时对状态进行判断

/**
 * Start the execution of the streams.
 *
 * @throws IllegalStateException if the StreamingContext is already stopped.
 */
def start(): Unit = synchronized {
  state match {
    case INITIALIZED =>
      startSite.set(DStream.getCreationSite())
      StreamingContext.ACTIVATION_LOCK.synchronized {
        StreamingContext.assertNoOtherContextIsActive()
        try {
          validate()
          // Start the streaming scheduler in a new thread, so that thread local properties
          // like call sites and job groups can be reset without affecting those of the
          // current thread.          说明:线程本地存储,线程ThreadLocal每个线程有自己的私有属性,设置线程的私有属性不会影响当前线程或其他线程
          ThreadUtils.runInNewThread("streaming-start") {
            sparkContext.setCallSite(startSite.get)
            sparkContext.clearJobGroup()
            sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false")
            //启动JobScheduler
            scheduler.start()
          }
          state = StreamingContextState.ACTIVE
        } catch {
          case NonFatal(e) =>
            logError("Error starting the context, marking it as stopped", e)
            scheduler.stop(false)
            state = StreamingContextState.STOPPED
            throw e
        }
        StreamingContext.setActiveContext(this)
      }
      shutdownHookRef = ShutdownHookManager.addShutdownHook(
        StreamingContext.SHUTDOWN_HOOK_PRIORITY)(stopOnShutdown)
      // Registering Streaming Metrics at the start of the StreamingContext
      assert(env.metricsSystem != null)
      env.metricsSystem.registerSource(streamingSource)
      uiTab.foreach(_.attach())
      logInfo("StreamingContext started")
    case ACTIVE =>
      logWarning("StreamingContext has already been started")
    case STOPPED =>
      throw new IllegalStateException("StreamingContext has already been stopped")
  }
}

上图中的红线代码是JobScheduler的start方法,启动了消息循环系统,监听器,ReceiverTracker 和InputInfoTracker,对应代码如下:

def start(): Unit = synchronized {
  if (eventLoop != null) return // scheduler has already been started

  logDebug("Starting JobScheduler")
  //消息驱动系统
  eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
    override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)
    override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
  }
  //启动消息循环处理线程
  eventLoop.start()
  // attach rate controllers of input streams to receive batch completion updates
  for {
    inputDStream <- ssc.graph.getInputStreams
    rateController <- inputDStream.rateController
  } ssc.addStreamingListener(rateController)
  listenerBus.start(ssc.sparkContext)
  receiverTracker = new ReceiverTracker(ssc)
  inputInfoTracker = new InputInfoTracker(ssc)
  //启动receiverTracker
  receiverTracker.start()
  //启动Job生成器
  jobGenerator.start()
  logInfo("Started JobScheduler")
}

消息处理函数,处理三类消息:开始处理Job,Job已完成,错误上报。

private def processEvent(event: JobSchedulerEvent) {
  try {
    event match {
      case JobStarted(job, startTime) => handleJobStart(job, startTime)
      case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime)
      case ErrorReported(m, e) => handleError(m, e)
    }
  } catch {
    case e: Throwable =>
      reportError("Error in job scheduler", e)
  }
}

先看下ReceiverTracker的启动过程,内部实例化ReceiverTrackerEndpoint这个Rpc消息通信体  

def start(): Unit = synchronized {
  if (isTrackerStarted) {
    throw new SparkException("ReceiverTracker already started")
  }

  if (!receiverInputStreams.isEmpty) {
    endpoint = ssc.env.rpcEnv.setupEndpoint(
      "ReceiverTracker", new ReceiverTrackerEndpoint(ssc.env.rpcEnv))
    if (!skipReceiverLaunch) launchReceivers()
    logInfo("ReceiverTracker started")
    trackerState = Started
  }
}

/** RpcEndpoint to receive messages from the receivers. */
private class ReceiverTrackerEndpoint(override val rpcEnv: RpcEnv) extends ThreadSafeRpcEndpoint {}

在ReceiverTracker启动的过程中会调用其launchReceivers方法

/**
 * Get the receivers from the ReceiverInputDStreams, distributes them to the
 * worker nodes as a parallel collection, and runs them.
 */
private def launchReceivers(): Unit = {
  val receivers = receiverInputStreams.map(nis => {
    val rcvr = nis.getReceiver()
    rcvr.setReceiverId(nis.id)
    rcvr
  })
  runDummySparkJob()
  logInfo("Starting " + receivers.length + " receivers")
  endpoint.send(StartAllReceivers(receivers))
}

其中调用了runDummySparkJob方法来启动Spark Streaming的框架第一个Job,其中collect这个action操作会触发Spark Job的执行。这个方法是为了确保每个Slave都注册上,避免所有Receiver都在一个节点,为后面计算负载均衡。

/**
 * Run the dummy Spark job to ensure that all slaves have registered. This avoids all the
 * receivers to be scheduled on the same node.
 *
 * TODO Should poll the executor number and wait for executors according to
 * "spark.scheduler.minRegisteredResourcesRatio" and
 * "spark.scheduler.maxRegisteredResourcesWaitingTime" rather than running a dummy job.
 */
private def runDummySparkJob(): Unit = {
  if (!ssc.sparkContext.isLocal) {
    ssc.sparkContext.makeRDD(1 to 50, 50).map(x => (x, 1)).reduceByKey(_ + _, 20).collect()
  }
  assert(getExecutors.nonEmpty)
}

  

还调用了endpoint.send(StartAllReceivers(receivers))方法,Rpc消息通信体发送StartAllReceivers消息。ReceiverTrackerEndpoint它自己接收到消息后,先根据调度策略获得Recevier在哪个Executor上运行,然后在调用startReceiver(receiver, executors)方法,来启动Receiver。

override def receive: PartialFunction[Any, Unit] = {
  // Local messages
  case StartAllReceivers(receivers) =>
    val scheduledLocations = schedulingPolicy.scheduleReceivers(receivers, getExecutors)
    for (receiver <- receivers) {
      val executors = scheduledLocations(receiver.streamId)
      updateReceiverScheduledExecutors(receiver.streamId, executors)
      receiverPreferredLocations(receiver.streamId) = receiver.preferredLocation
      startReceiver(receiver, executors)
    }

在startReceiver方法中,ssc.sparkContext.submitJob提交Job的时候传入startReceiverFunc这个方法,因为startReceiverFunc该方法是在Executor上执行的。而在startReceiverFunc方法中是实例化ReceiverSupervisorImpl对象,该对象是对Receiver进行管理和监控。这个Job是Spark Streaming框架为我们启动的第二个Job,且一直运行。因为supervisor.awaitTermination()该方法会阻塞等待退出。

/**
 * Start a receiver along with its scheduled executors
 */
private def startReceiver(
    receiver: Receiver[_],
    scheduledLocations: Seq[TaskLocation]): Unit = {
  def shouldStartReceiver: Boolean = {
    // It‘s okay to start when trackerState is Initialized or Started
    !(isTrackerStopping || isTrackerStopped)
  }

  val receiverId = receiver.streamId
  if (!shouldStartReceiver) {
    onReceiverJobFinish(receiverId)
    return
  }

  val checkpointDirOption = Option(ssc.checkpointDir)
  val serializableHadoopConf =
    new SerializableConfiguration(ssc.sparkContext.hadoopConfiguration)

  // Function to start the receiver on the worker node
  val startReceiverFunc: Iterator[Receiver[_]] => Unit =
    (iterator: Iterator[Receiver[_]]) => {
      if (!iterator.hasNext) {
        throw new SparkException(
          "Could not start receiver as object not found.")
      }
      if (TaskContext.get().attemptNumber() == 0) {
        val receiver = iterator.next()
        assert(iterator.hasNext == false)
        //实例化Receiver监控者
        val supervisor = new ReceiverSupervisorImpl(
        receiver, SparkEnv.get, serializableHadoopConf.value, checkpointDirOption)
        supervisor.start()
        supervisor.awaitTermination()
      } else {
        // It‘s restarted by TaskScheduler, but we want to reschedule it again. So exit it.
      }
    }

  // Create the RDD using the scheduledLocations to run the receiver in a Spark job
  val receiverRDD: RDD[Receiver[_]] =
    if (scheduledLocations.isEmpty) {
      ssc.sc.makeRDD(Seq(receiver), 1)
    } else {
      val preferredLocations = scheduledLocations.map(_.toString).distinct
      ssc.sc.makeRDD(Seq(receiver -> preferredLocations))
    }
  receiverRDD.setName(s"Receiver $receiverId")
  ssc.sparkContext.setJobDescription(s"Streaming job running receiver $receiverId")
  ssc.sparkContext.setCallSite(Option(ssc.getStartSite()).getOrElse(Utils.getCallSite()))
  val future = ssc.sparkContext.submitJob[Receiver[_], Unit, Unit](
    receiverRDD, startReceiverFunc, Seq(0), (_, _) => Unit, ())
  // We will keep restarting the receiver job until ReceiverTracker is stopped
  future.onComplete {
    case Success(_) =>
      if (!shouldStartReceiver) {
        onReceiverJobFinish(receiverId)
      } else {
        logInfo(s"Restarting Receiver $receiverId")
        self.send(RestartReceiver(receiver))
      }
    case Failure(e) =>
      if (!shouldStartReceiver) {
        onReceiverJobFinish(receiverId)
      } else {
        logError("Receiver has been stopped. Try to restart it.", e)
        logInfo(s"Restarting Receiver $receiverId")
        self.send(RestartReceiver(receiver))
      }
  }(submitJobThreadPool)
  logInfo(s"Receiver ${receiver.streamId} started")
}

接下来看下ReceiverSupervisorImpl的启动过程,先启动所有注册上的BlockGenerator对象,然后向ReceiverTrackerEndpoint发送RegisterReceiver消息,再调用receiver的onStart方法。

/** Start the supervisor */
def start() {
  onStart()
  startReceiver()
}

override protected def onStart() {
  registeredBlockGenerators.foreach { _.start() }
}

/** Start receiver */
def startReceiver(): Unit = synchronized {
  try {
    if (onReceiverStart()) {
      logInfo("Starting receiver")
      receiverState = Started
      receiver.onStart()
      logInfo("Called receiver onStart")
    } else {
      // The driver refused us
      stop("Registered unsuccessfully because Driver refused to start receiver " + streamId, None)
    }
  } catch {
    case NonFatal(t) =>
      stop("Error starting receiver " + streamId, Some(t))
  }
}

override protected def onReceiverStart(): Boolean = {
  val msg = RegisterReceiver(
    streamId, receiver.getClass.getSimpleName, host, executorId, endpoint)
  trackerEndpoint.askWithRetry[Boolean](msg)
}

其中在Driver运行的ReceiverTrackerEndpoint对象接收到RegisterReceiver消息后,将streamId, typ, host, executorId, receiverEndpoint封装为ReceiverTrackingInfo保存到内存对象receiverTrackingInfos这个HashMap中。

override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
  // Remote messages
  case RegisterReceiver(streamId, typ, host, executorId, receiverEndpoint) =>
    val successful =
      registerReceiver(streamId, typ, host, executorId, receiverEndpoint, context.senderAddress)
    context.reply(successful)
  case AddBlock(receivedBlockInfo) =>
    if (WriteAheadLogUtils.isBatchingEnabled(ssc.conf, isDriver = true)) {
      walBatchingThreadPool.execute(new Runnable {
        override def run(): Unit = Utils.tryLogNonFatalError {
          if (active) {
            context.reply(addBlock(receivedBlockInfo))
          } else {
            throw new IllegalStateException("ReceiverTracker RpcEndpoint shut down.")
          }
        }
      })
    } else {
      context.reply(addBlock(receivedBlockInfo))
    }

/** Register a receiver */
private def registerReceiver(
    streamId: Int,
    typ: String,
    host: String,
    executorId: String,
    receiverEndpoint: RpcEndpointRef,
    senderAddress: RpcAddress
  ): Boolean = {
  if (!receiverInputStreamIds.contains(streamId)) {
    throw new SparkException("Register received for unexpected id " + streamId)
  }

  if (isTrackerStopping || isTrackerStopped) {
    return false
  }

  val scheduledLocations = receiverTrackingInfos(streamId).scheduledLocations
  val acceptableExecutors = if (scheduledLocations.nonEmpty) {
      // This receiver is registering and it‘s scheduled by
      // ReceiverSchedulingPolicy.scheduleReceivers. So use "scheduledLocations" to check it.
      scheduledLocations.get
    } else {
      // This receiver is scheduled by "ReceiverSchedulingPolicy.rescheduleReceiver", so calling
      // "ReceiverSchedulingPolicy.rescheduleReceiver" again to check it.
      scheduleReceiver(streamId)
    }

  def isAcceptable: Boolean = acceptableExecutors.exists {
    case loc: ExecutorCacheTaskLocation => loc.executorId == executorId
    case loc: TaskLocation => loc.host == host
  }

  if (!isAcceptable) {
    // Refuse it since it‘s scheduled to a wrong executor
    false
  } else {
    val name = s"${typ}-${streamId}"
    val receiverTrackingInfo = ReceiverTrackingInfo(
      streamId,
      ReceiverState.ACTIVE,
      scheduledLocations = None,
      runningExecutor = Some(ExecutorCacheTaskLocation(host, executorId)),
      name = Some(name),
      endpoint = Some(receiverEndpoint))
    receiverTrackingInfos.put(streamId, receiverTrackingInfo)
    listenerBus.post(StreamingListenerReceiverStarted(receiverTrackingInfo.toReceiverInfo))
    logInfo("Registered receiver for stream " + streamId + " from " + senderAddress)
    true
  }
}

  

receiver的启动,我们以ssc.socketTextStream("localhost", 9999)为例,创建的是SocketReceiver对象。内部启动一个线程来连接Socket Server,和读取socket的数据并存储。

private[streaming]
class SocketReceiver[T: ClassTag](
    host: String,
    port: Int,
    bytesToObjects: InputStream => Iterator[T],
    storageLevel: StorageLevel
  ) extends Receiver[T](storageLevel) with Logging {

  def onStart() {
    // Start the thread that receives data over a connection
    new Thread("Socket Receiver") {
      setDaemon(true)
      override def run() { receive() }
    }.start()
  }

  def onStop() {
    // There is nothing much to do as the thread calling receive()
    // is designed to stop by itself isStopped() returns false
  }

  /** Create a socket connection and receive data until receiver is stopped */
  def receive() {
    var socket: Socket = null
    try {
      logInfo("Connecting to " + host + ":" + port)
      socket = new Socket(host, port)
      logInfo("Connected to " + host + ":" + port)
      val iterator = bytesToObjects(socket.getInputStream())
      while(!isStopped && iterator.hasNext) {
        store(iterator.next)
      }
      if (!isStopped()) {
        restart("Socket data stream had no more data")
      } else {
        logInfo("Stopped receiving")
      }
    } catch {
      case e: java.net.ConnectException =>
        restart("Error connecting to " + host + ":" + port, e)
      case NonFatal(e) =>
        logWarning("Error receiving data", e)
        restart("Error receiving data", e)
    } finally {
      if (socket != null) {
        socket.close()
        logInfo("Closed socket to " + host + ":" + port)
      }
    }
  }
}

接下来回到JobScheduler的启动过程的第三步启动JobGenerator,启动消息系统和定时器。按照batchInterval时间间隔定期发送GenerateJobs消息,消息循环体接收到该消息后回调generateJobs方法。根据特定的时间获取具体的数据,然后调用DStreamGraph的generateJobs方法生成Job,注意这里的Job不是Spark Core级别的Job,它只是基于DStreamGraph而生成的RDD的DAG而已,然后调用JobScheduler的submitJobSet方法,最后发送DoCheckpoint消息进行checkpoint操作。

//根据创建StreamContext时传入的batchInterval,定时发送GenerateJobs消息
private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds,
  longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")

/** Start generation of jobs */
def start(): Unit = synchronized {
  if (eventLoop != null) return // generator has already been started

  // Call checkpointWriter here to initialize it before eventLoop uses it to avoid a deadlock.
  // See SPARK-10125
  checkpointWriter

  eventLoop = new EventLoop[JobGeneratorEvent]("JobGenerator") {
    override protected def onReceive(event: JobGeneratorEvent): Unit = processEvent(event)

    override protected def onError(e: Throwable): Unit = {
      jobScheduler.reportError("Error in job generator", e)
    }
  }
  //启动消息循环处理线程
  eventLoop.start()

  if (ssc.isCheckpointPresent) {
    restart()
  } else {
    //开启定时生成Job的定时器
    startFirstTime()
  }
}

/** Starts the generator for the first time */
private def startFirstTime() {
  val startTime = new Time(timer.getStartTime())
  graph.start(startTime - graph.batchDuration)
  timer.start(startTime.milliseconds)
  logInfo("Started JobGenerator at " + startTime)
}

/** Processes all events */
private def processEvent(event: JobGeneratorEvent) {
  logDebug("Got event " + event)
  event match {
    case GenerateJobs(time) => generateJobs(time)
    case ClearMetadata(time) => clearMetadata(time)
    case DoCheckpoint(time, clearCheckpointDataLater) =>
      doCheckpoint(time, clearCheckpointDataLater)
    case ClearCheckpointData(time) => clearCheckpointData(time)
  }
}

/** Generate jobs and perform checkpoint for the given `time`.  */
private def generateJobs(time: Time) {
  // Set the SparkEnv in this thread, so that job generation code can access the environment
  // Example: BlockRDDs are created in this thread, and it needs to access BlockManager
  // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
  SparkEnv.set(ssc.env)
  Try {

    //根据特定的时间获取具体的数据
    jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
    //调用DStreamGraph的generateJobs生成Job
    graph.generateJobs(time) // generate jobs using allocated block
  } match {
    case Success(jobs) =>
      val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
      jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
    case Failure(e) =>
      jobScheduler.reportError("Error generating jobs for time " + time, e)
  }
  eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
}

/** Perform checkpoint for the give `time`. */
private def doCheckpoint(time: Time, clearCheckpointDataLater: Boolean) {
  if (shouldCheckpoint && (time - graph.zeroTime).isMultipleOf(ssc.checkpointDuration)) {
    logInfo("Checkpointing graph for time " + time)
    ssc.graph.updateCheckpointData(time)
    checkpointWriter.write(new Checkpoint(ssc, time), clearCheckpointDataLater)
  }
}

  

DStreamGraph的generateJobs方法来调用输出流的generateJob方法来生成Jobs集合。

//输出流:具体Action的输出操作
private val outputStreams = new ArrayBuffer[DStream[_]]()

def generateJobs(time: Time): Seq[Job] = {
  logDebug("Generating jobs for time " + time)
  val jobs = this.synchronized {
    outputStreams.flatMap { outputStream =>
      val jobOption = outputStream.generateJob(time)
      jobOption.foreach(_.setCallSite(outputStream.creationSite))
      jobOption
    }
  }
  logDebug("Generated " + jobs.length + " jobs for time " + time)
  jobs
}

来看下DStream的generateJobs方法,调用了getOrCompute方法来获取当Interval的时候DStreamGraph会被BatchData实例化成为RDD,如果有RDD则封装jobFunc方法,里面包含context.sparkContext.runJob(rdd, emptyFunc),然后返回封装后的Job。

/**
 * Generate a SparkStreaming job for the given time. This is an internal method that
 * should not be called directly. This default implementation creates a job
 * that materializes the corresponding RDD. Subclasses of DStream may override this
 * to generate their own jobs.
 */
private[streaming] def generateJob(time: Time): Option[Job] = {
  getOrCompute(time) match {
    case Some(rdd) => {
      val jobFunc = () => {
        val emptyFunc = { (iterator: Iterator[T]) => {} }
        context.sparkContext.runJob(rdd, emptyFunc)
      }
      Some(new Job(time, jobFunc))
    }
    case None => None
  }
}

接下来看JobScheduler的submitJobSet方法,向线程池中提交JobHandler。而JobHandler实现了Runnable 接口,最终调用了job.run()这个方法。看一下Job类的定义,其中run方法调用的func为构造Job时传入的jobFunc,其包含了context.sparkContext.runJob(rdd, emptyFunc)操作,最终导致Job的提交。

def submitJobSet(jobSet: JobSet) {
  if (jobSet.jobs.isEmpty) {
    logInfo("No jobs added for time " + jobSet.time)
  } else {
    listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
    jobSets.put(jobSet.time, jobSet)
    jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
    logInfo("Added jobs for time " + jobSet.time)
  }
}

private class JobHandler(job: Job) extends Runnable with Logging {
    import JobScheduler._

    def run() {
      try {
        val formattedTime = UIUtils.formatBatchTime(
          job.time.milliseconds, ssc.graph.batchDuration.milliseconds, showYYYYMMSS =false)
        val batchUrl = s"/streaming/batch/?id=${job.time.milliseconds}"
        val batchLinkText = s"[output operation ${job.outputOpId}, batch time${formattedTime}]"

        ssc.sc.setJobDescription(
          s"""Streaming job from <a href="$batchUrl">$batchLinkText</a>""")
        ssc.sc.setLocalProperty(BATCH_TIME_PROPERTY_KEY, job.time.milliseconds.toString)
        ssc.sc.setLocalProperty(OUTPUT_OP_ID_PROPERTY_KEY, job.outputOpId.toString)

        // We need to assign `eventLoop` to a temp variable. Otherwise, because
        // `JobScheduler.stop(false)` may set `eventLoop` to null when this method is running, then
        // it‘s possible that when `post` is called, `eventLoop` happens to null.
        var _eventLoop = eventLoop
        if (_eventLoop != null) {
          _eventLoop.post(JobStarted(job, clock.getTimeMillis()))
          // Disable checks for existing output directories in jobs launched by the streaming
          // scheduler, since we may need to write output to an existing directory during checkpoint
          // recovery; see SPARK-4835 for more details.
          PairRDDFunctions.disableOutputSpecValidation.withValue(true) {
            job.run()
          }
          _eventLoop = eventLoop
          if (_eventLoop != null) {
            _eventLoop.post(JobCompleted(job, clock.getTimeMillis()))
          }
        } else {
          // JobScheduler has been stopped.
        }
      } finally {
        ssc.sc.setLocalProperty(JobScheduler.BATCH_TIME_PROPERTY_KEY, null)
        ssc.sc.setLocalProperty(JobScheduler.OUTPUT_OP_ID_PROPERTY_KEY, null)
      }
    }
  }
}

private[streaming]
class Job(val time: Time, func: () => _) {
  private var _id: String = _
  private var _outputOpId: Int = _
  private var isSet = false
  private var _result: Try[_] = null
  private var _callSite: CallSite = null
  private var _startTime: Option[Long] = None
  private var _endTime: Option[Long] = None

  def run() {
    _result = Try(func())
  }

至此,将job通过SparkContext的runJob方法提交给了Spark集群!!

  

特别感谢王家林老师的独具一格的讲解:

王家林老师名片:

中国Spark第一人

新浪微博:http://weibo.com/ilovepains

微信公众号:DT_Spark

博客:http://blog.sina.com.cn/ilovepains

QQ:1740415547

YY课堂:每天20:00现场授课频道68917580

时间: 2024-10-13 20:20:37

spark版本定制五:基于案例一节课贯通Spark Streaming流计算框架的运行源码的相关文章

版本定制第5课:基于案例一节课贯通Spark Streaming流计算框架的运行源码

本期内容: 1.在线动态计算分类最热门商品案例回顾与演示 2.基于案例贯通Spark Streaming的运行源码 第一部分案例: package com.dt.spark.sparkstreaming import com.robinspark.utils.ConnectionPool import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.spark.sql.hive.HiveCo

(版本定制)第5课:基于案例分析Spark Streaming流计算框架的运行源码

本期内容: 1.在线动态计算分类最热门商品案例回顾与演示 2.基于案例分析Spark Streaming的运行源码 第一部分案例: package com.dt.spark.sparkstreaming import com.robinspark.utils.ConnectionPoolimport org.apache.spark.SparkConfimport org.apache.spark.sql.Rowimport org.apache.spark.sql.hive.HiveConte

Spark定制班第5课:基于案例一节课贯通Spark Streaming流计算框架的运行源码

本期内容: 1 在线动态计算分类最热门商品案例回顾与演示 2 基于案例贯通Spark Streaming的运行源码 1 在线动态计算分类最热门商品案例回顾与演示 我们用Spark Streaming+Spark SQL来实现分类最热门商品的在线动态计算.代码如下: package com.dt.spark.streaming import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.sp

第5课:基于案例一节课贯通Spark Streaming流计算框架的运行源码

本期内容: 1 在线动态计算分类最热门商品案例回顾与演示 2 基于案例贯通Spark Streaming的运行源码 一.案例代码 在线动态计算电商中不同类别中最热门的商品排名,例如:手机类别中最热门的三种手机.电视类别中最热门的三种电视等 package com.dt.spark.sparkstreaming import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.spark.sql.

基于案例一节课贯通Spark Streaming流计算框架的运行源码

 在线动态计算分类最热门商品案例回顾与演示 基于案例贯通Spark Streaming的运行源码 使用Spark Streaming + Spark SQL来在线动态计算电商中不同类别中最热门的商品排名,例如手机这个类别下面最热门的三款手机. 是用mysql数据库作为元数据库,使用Hive作为存储引擎,使用Spark SQL作为查询引擎. 其中链接数据库代码如下: package com.dt.spark.com.dt.spark.streaming; import java.sql.Con

基于案例贯通 Spark Streaming 流计算框架的运行源码

本期内容 : Spark Streaming+Spark SQL案例展示 基于案例贯穿Spark Streaming的运行源码 一. 案例代码阐述 : 在线动态计算电商中不同类别中最热门的商品排名,例如:手机类别中最热门的三种手机.电视类别中最热门的三种电视等. 1.案例运行代码 : import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.spark.sql.hive.HiveCont

Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码

本讲内容: a. 在线动态计算分类最热门商品案例回顾与演示 b. 基于案例贯通Spark Streaming的运行源码 注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解. 上节回顾 上节课主要从事务视角为大家探索Spark Streaming架构机制:Spark Streaming程序分成而部分,一部分是Driver,另外一部分是Executor.通过对Driver和Executor解析,洞察怎么才能完成完整的语义.事务一致性,并保证数据的零丢失,Exa

Spark发行版笔记5:贯通Spark Streaming流计算框架的运行源码

本章节内容: 一.在线动态计算分类最热门商品案例回顾 二.基于案例贯通Spark Streaming的运行源码 先看代码(源码场景:用户.用户的商品.商品的点击量排名,按商品.其点击量排名前三): package com.dt.spark.sparkstreaming import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.spark.sql.hive.HiveContext impo

5.Spark Streaming流计算框架的运行流程源码分析2

1 spark streaming 程序代码实例 代码如下: [html] view plain copy object OnlineTheTop3ItemForEachCategory2DB { def main(args: Array[String]){ val conf = new SparkConf() //创建SparkConf对象 //设置应用程序的名称,在程序运行的监控界面可以看到名称 conf.setAppName("OnlineTheTop3ItemForEachCategor