多线程的那点儿事(之自旋锁)

自旋锁是SMP中经常使用到的一个锁。所谓的smp,就是对称多处理器的意思。在工业用的pcb板上面,特别是服务器上面,一个pcb板有多个cpu是 很正常的事情。这些cpu相互之间是独立运行的,每一个cpu均有自己的调度队列。然而,这些cpu在内存空间上是共享的。举个例子说,假设有一个数据 value = 10,那么这个数据可以被所有的cpu访问。这就是共享内存的本质意义。

我们可以看一段Linux 下的的自旋锁代码(kernel 2.6.23,asm-i386/spinlock.h),就可有清晰的认识了,

[cpp] view plaincopy

  1. static inline void __raw_spin_lock(raw_spinlock_t *lock)
  2. {
  3. asm volatile("\n1:\t"
  4. LOCK_PREFIX " ; decb %0\n\t"
  5. "jns 3f\n"
  6. "2:\t"
  7. "rep;nop\n\t"
  8. "cmpb $0,%0\n\t"
  9. "jle 2b\n\t"
  10. "jmp 1b\n"
  11. "3:\n\t"
  12. : "+m" (lock->slock) : : "memory");
  13. }

上面这段代码是怎么做到自旋锁的呢?我们可以一句一句看看,

line  4: 对lock->slock自减,这个操作是互斥的,LOCK_PREFIX保证了此刻只能有一个CPU访问内存
line  5: 判断lock->slock是否为非负数,如果是跳转到3,即获得自旋锁
line  6: 位置符
line  7: lock->slock此时为负数,说明已经被其他cpu抢占了,cpu休息一会,相当于pause指令
line  8: 继续将lock->slock和0比较,
line  9: 判断lock->slock是否小于等于0,如果判断为真,跳转到2,继续休息
line 10: 此时lock->slock已经大于0,可以继续尝试抢占了,跳转到1
line 11: 位置符 
  
  
 上面的操作,除了第4句是cpu互斥操作,其他都不是。所以,我们发现,在cpu之间寻求互斥访问的时候,在某一时刻只有一个内存访问权限。所以,如果
其他的cpu之间没有获得访问权限,就会不断地查看当前是否可以再次申请自旋锁了。这个过程中间不会停歇,除非获得访问的权限为止。

总结:
   1)在smp上自旋锁是多cpu互斥访问的基础
   2)因为自旋锁是自旋等待的,所以处于临界区的代码应尽可能短
   3)上面的LOCK_PREFIX,在x86下面其实就是“lock”,gcc下可以编过,朋友们可以自己试试

多线程的那点儿事(之自旋锁)

时间: 2024-09-29 17:09:07

多线程的那点儿事(之自旋锁)的相关文章

什么是自旋锁

多线程中,对共享资源进行访问,为了防止并发引起的相关问题,通常都是引入锁的机制来处理并发问题. 获取到资源的线程A对这个资源加锁,其他线程比如B要访问这个资源首先要获得锁,而此时A持有这个资源的锁,只有等待线程A逻辑执行完,释放锁,这个时候B才能获取到资源的锁进而获取到该资源. 这个过程中,A一直持有着资源的锁,那么没有获取到锁的其他线程比如B怎么办?通常就会有两种方式: 1. 一种是没有获得锁的进程就直接进入阻塞(BLOCKING),这种就是互斥锁 2. 另外一种就是没有获得锁的进程,不进入阻

多线程的那点儿事(之windows锁)

在windows系统中,系统本身为我们提供了很多锁.通过这些锁的使用,一方面可以加强我们对锁的认识,另外一方面可以提高代码的性能和健壮性.常用的锁以下四种:临界区,互斥量,信号量,event. (1)临界区 临界区是最简单的一种锁.基本的临界区操作有, [cpp] view plaincopy InitializeCriticalSection EnterCriticalSection LeaveCriticalSection DeleteCriticalSection 如果想要对数据进行互斥操

iOS - 互斥锁&&自旋锁 多线程安全隐患(转载)

一.多线程安全隐患 资源共享  一块资源可能会被多个线程共享,也就是多个线程可能会访问到一块资源 比如多个线程访问同一个对象,同一个变量,同一个文件. 当多线程访问同一块资源的时候,很容易引发数据错乱和数据安全问题二.原子和非原子属性 1>OC 在定义属性的时候有nonatomic和atomic两种选择      * atomic:原子属性,为 setter 方法加锁      * nonatomic:非原子属性,不会为 setter 方法加锁        普通情况下都是在主线程做操作,所以一

多线程编程之自旋锁

一.什么是自旋锁 一直以为自旋锁也是用于多线程互斥的一种锁,原来不是! 自旋锁是专为防止多处理器并发(实现保护共享资源)而引入的一种锁机制.自旋锁与互斥锁比较类似,它们都是为了解决对某项资源的互斥使用.无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁.但是两者在调度机制上略有不同.对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态.但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁

多线程之美6一CAS与自旋锁

1.什么是CAS CAS 即 compare and swap 比较并交换, 涉及到三个参数,内存值V, 预期值A, 要更新为的值B, 拿着预期值A与内存值V比较,相等则符合预期,将内存值V更新为B, 不相等,则不能更新V. 为什么预期值A与内存值V不一样了呢? 在多线程环境下,对于临界区的共享资源,所有线程都可以访问修改,这时为了保证数据不会发生错误,通常会对访问临界区资源加锁,同一时刻最多只能让一个线程访问(独占模式下),这样会让线程到临界区时串行执行,加锁操作可能会导致并发性能降低,而循环

多线程中的锁系统(四)-谈谈自旋锁

目录 一:基础 二:自旋锁示例 三:SpinLock 四:继续SpinLock 五:总结 一:基础 内核锁:基于内核对象构造的锁机制,就是通常说的内核构造模式.用户模式构造和内核模式构造 优点:cpu利用最大化.它发现资源被锁住,请求就排队等候.线程切换到别处干活,直到接受到可用信号,线程再切回来继续处理请求. 缺点:托管代码->用户模式代码->内核代码损耗.线程上下文切换损耗. 在锁的时间比较短时,系统频繁忙于休眠.切换,是个很大的性能损耗. 自旋锁:原子操作+自循环.通常说的用户构造模式.

Java线程 - CAS自旋锁(spin-lock)

一.自旋锁提出的背景 由于在多处理器系统环境中有些资源因为其有限性,有时需要互斥访问(mutual exclusion),这时会引入锁的机制,只有获取了锁的进程才能获取资源访问.即是每次只能有且只有一个进程能获取锁,才能进入自己的临界区,同一时间不能两个或两个以上进程进入临界区,当退出临界区时释放锁.设计互斥算法时总是会面临一种情况,即没有获得锁的进程怎么办?通常有2种处理方式.一种是没有获得锁的调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,这就是自旋锁,他不用将县城阻塞起来(NON

原子属性与非原子属性,互斥锁与自旋锁介绍

nonatomic 非原子属性 非线程安全,适合内存小的移动设备(手机,平板...) atomic 原子属性(线程安全,但需要消耗大量资源)针对多线程设计的,为默认值,保证同一时间只有一个线程能够写入;本身就是一把自旋锁;单写多读,单个线程写入,多个线程读取 注意:当重写属性的get与set方法时需要在@implementation后添加:@synthesiae 属性名 = _属性名; 互斥锁与自旋锁对比 互斥锁:如果发现其他线程正在执行锁定代码,线程会进入休眠(就绪状态),等其他线程时间到打开

一个无锁消息队列引发的血案:怎样做一个真正的程序员?(二)——月:自旋锁

前续 一个无锁消息队列引发的血案:怎样做一个真正的程序员?(一)——地:起因 一个无锁消息队列引发的血案:怎样做一个真正的程序员?(二)——月:自旋锁 平行时空 在复制好上面那一行我就先停下来了,算是先占了个位置,虽然我知道大概要怎么写,不过感觉还是很乱. 我突然想到,既然那么纠结,那么混乱,那么不知所措,我们不如换个视角.记得高中时看过的为数不多的长篇小说<穆斯林的葬礼>,作者是:霍达(女),故事描写了两个发生在不同时代.有着不同的内容却又交错扭结的爱情悲剧,一个是“玉”的故事,一个是“月”