逻辑回归(LogisticRegression)--python实现

1、概述

  Logistic regression(逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。

  在经典之作《数学之美》中也看到了它用于广告预测,也就是根据某广告被用 户点击的可能性,把最可能被用户点击的广告摆在用户能看到的地方,然后叫他“你点我啊!”用户点了,你就有钱收了。这就是为什么我们的电脑现在广告泛滥的 原因。还有类似的某用户购买某商品的可能性,某病人患有某种疾病的可能性啊等等。这个世界是随机的(当然了,人为的确定性系统除外,但也有可能有噪声或产生错误的结果,只是这个错误发生的可能性太小了,小到千万年不遇,小到忽略不计而已),所以万物的发生都可以用可能性或者几率(Odds)来表达。“几率”指的是某事物发生的可能性与不发生的可能性的比值。

Logistic regression可以用来回归,也可以用来分类,主要是二分类。

2、基本理论

2.1Logistic regression和Sigmoid函数

  回归:假设现在有一些数据点,我们用一条直线对这些点进行拟合(该条称为最佳拟合直线),这个拟合过程就称作回归。利用Logistic回归进行分类的思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的“回归”一词源于最佳拟合,表示找到最佳拟合参数,使用的是最优化算法。

  Sigmoid函数具体的计算公式如下:

    

          z=w0x0+w1x1+w2x2+...+wnxn, z=wTx  其中w是我们要找的最佳参数(系数),x是分类器的输入数据特征。

  当x为0时,Sigmoid函数值为0.5,随着x的增大,对应的Sigmoid值将逼近于1;而随着x的减小,Sigmoid值将逼近于0。如果横坐标刻度足够大(如下图所示),Sigmoid函数看起来很像一个阶跃函数。

    

  为了实现Logistic回归分类器,我们可以在每个特征上都乘以一个回归系数,然后把所有结果值相加,将这个总和代入Sigmoid函数中,进而得到一个范围在0-1之间的数值。任何大于0.5的数据被分入1类,小于0.5即被归入0类。所以,Logistic回归也可以被看作是一种概率估计。

2.2最优化理论

  由上述问题得到,我们现在的问题变成了:最佳回归系数时多少?

    z=w0x0+w1x1+w2x2+...+wnxnz=wT

  向量x是分类器的输入数据,向量w是我们要找的最佳参数(系数),从而使得分类器尽可能地精确,为了寻找最佳参数,需要用到最优化理论的一些知识。

  下面首先介绍梯度上升的最优化方法,我们将学习到如何使用该方法求得数据集的最佳参数。接下来,展示如何绘制梯度上升法产生的决策边界图,该图能将梯度上升法的分类效果可视化地呈现出来。最后我们将学习随机梯度上升法,以及如何对其进行修改以获得更好的结果。

2.2.1梯度上升法

  梯度上升法的基于的思想是:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。则函数f(x,y)的梯度由下式表示:

  这个梯度意味着要沿x方向移动,沿y方向移动,其中,函数f(x,y)必须要在待计算的点上有定义并且可微。具体的函数例子如下图所示:

      

      注释:梯度上升算法到达每个点后都会重新估计移动的方向。从P0开始,计算完该点的梯度,函数就根据梯度移动到下一点P1。在P1点,梯度再次被重新计算,并沿新的梯度方向移动到P2。如此循环迭代,直到满足停止条件。迭代过程中,梯度算子总是保证我们能选取到最佳的移动方向。

  可以看到,梯度算子总是指向函数值增长最快的方向。这里所说的是移动方向,而未提到移动量的大小。该量值称为歩长,记作

时间: 2024-11-10 00:54:26

逻辑回归(LogisticRegression)--python实现的相关文章

逻辑回归(logistic-regression)之梯度下降法详解

引言 逻辑回归常用于预测疾病发生的概率,例如因变量是是否恶性肿瘤,自变量是肿瘤的大小.位置.硬度.患者性别.年龄.职业等等(很多文章里举了这个例子,但现代医学发达,可以通过病理检查,即获取标本放到显微镜下观察是否恶变来判断):广告界中也常用于预测点击率或者转化率(cvr/ctr),例如因变量是是否点击,自变量是物料的长.宽.广告的位置.类型.用户的性别.爱好等等. 本章主要介绍逻辑回归算法推导.梯度下降法求最优值的推导及spark的源码实现. 常规方法 一般回归问题的步骤是: 1. 寻找预测函数

numpy+sklearn 手动实现逻辑回归【Python】

逻辑回归损失函数: from sklearn.datasets import load_iris,make_classification from sklearn.model_selection import train_test_split import tensorflow as tf import numpy as np X,Y = make_classification(n_samples=1000,n_features=5,n_classes=2) x_train,x_test,y_t

用Python开始机器学习(7:逻辑回归分类) --好!!

from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到过回归算法来进行数值预测.逻辑回归算法本质还是回归,只是其引入了逻辑函数来帮助其分类.实践发现,逻辑回归在文本分类领域表现的也很优秀.现在让我们来一探究竟. 1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小

机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)

机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 这节学习的是逻辑回归(Logistic Regression),也算进入了比较正统的机器学习算法.啥叫正统呢?我概念里面机器学习算法一般是这样一个步骤: 1)对于一个问题,我们用数学语言来描述它,然后建立一个模型,例如回归模型或者分类模型等

Python数据挖掘—回归—逻辑回归

概念 针对因变量为分类变量而进行回归分析的一种统计方法,属于概率型非线性回归 优点:算法易于实现和部署,执行效率和准确度高 缺点:离散型的自变量数据需要通过生成虚拟变量的方式来使用 在线性回归中,因变量是连续性变量,那么线性回归能根据因变量和自变量存在的线性关系来构造回归方程,因变量变成分类变量后就不存在这种关系了,需通过对数变换来进行处理(Sigmoid函数) 步骤: 1.读取数据: import pandas from pandas import read_csv data=read_csv

python实现随机森林、逻辑回归和朴素贝叶斯的新闻文本分类

实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb表示朴素贝叶斯 rf表示随机森林 lg表示逻辑回归 初学者(我)通过本程序的学习可以巩固python基础,学会python文本的处理,和分类器的调用.方便接下来的机器学习的学习. 各个参数直观的含义: # -*- coding: utf-8 -*- """ Created on

Python逻辑回归原理及实际案例应用

前言 上面我们介绍了线性回归, 岭回归, Lasso回归, 今天我们来看看另外一种模型-"逻辑回归". 虽然它有"回归"一词, 但解决的却是分类问题 目录 1. 逻辑回归 2. 优缺点及优化问题 3. 实际案例应用 4. 总结 正文 在前面所介绍的线性回归, 岭回归和Lasso回归这三种回归模型中, 其输出变量均为连续型, 比如常见的线性回归模型为: 其写成矩阵形式为: 现在这里的输出为连续型变量, 但是实际中会有"输出为离散型变量"这样的需求,

python sklearn库实现逻辑回归的实例代码

Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Reduction).分类(Classfication).聚类(Clustering)等方法.当我们面临机器学习问题时,便可根据下图来选择相应的方法. Sklearn具有以下特点: 简单高效的数据挖掘和数据分析工具 让每个人能够在复杂环境中重复使用 建立NumPy.Scipy.MatPlotLib之上 代

21-城里人套路深之用python实现逻辑回归算法

如果和一个人交流时,他的思想像弹幕一样飘散在空中,将是怎样的一种景象?我想大概会毫不犹豫的点关闭的.生活为啥不能简单明了?因为太直白了令人乏味.保留一些不确定性反而扑朔迷离,引人入胜.我们学习了线性回归,对于损失函数及权重更新公式理解起来毫无压力,这是具体直白的好处.然而遇到抽象晦涩的逻辑回归,它的损失函数及权重更新公式就经历了从p(取值范围0~1)->p/(1-p)(取值范围0~+oo)->z=log(p/(1-p))(取值范围-oo~+oo)->p=1/1+e^(-z)->极大