中国剩余定理学习笔记

先看一道poj上的题目:【poj1006】 Biorhythms

题意:

  人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。

分析:

  首先我们要知道,任意两个峰值之间一定相距整数倍的周期。假设一年的第N天达到峰值,则下次达到峰值的时间为N+Tk(T是周期,k是任意正整数)。所以,三个峰值同时出现的那一天(S)应满足

  S = N1 + T1*k1 = N2 + T2*k2 = N3 + T3*k3

  N1,N2,N3分别为为体力,情感,智力出现峰值的日期, T1,T2,T3分别为体力,情感,智力周期。 我们需要求出k1,k2,k3三个非负整数使上面的等式成立。

  想直接求出k1,k2,k3貌似很难,但是我们的目的是求出S, 可以考虑从结果逆推。根据上面的等式,S满足三个要求:除以T1余数为N1,除以T2余数为N2,除以T3余数为N3。这样我们就把问题转化为求一个最小数,该数除以T1余N1,除以T2余N2,除以T3余N3。这就是著名的中国剩余定理,我们的老祖宗在几千年前已经对这个问题想出了一个精妙的解法。依据此解法的算法,时间复杂度可达到O(1)。


中国剩余定理:

  在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。具体解法分三步:

    1. 找出三个数:从3和5的公倍数中找出被7除余1的最小数15,从3和7的公倍数中找出被5除余1 的最小数21,最后从5和7的公倍数中找出除3余1的最小数70。
    2. 用15乘以2(2为最终结果除以7的余数),用21乘以3(3为最终结果除以5的余数),同理,用70乘以2(2为最终结果除以3的余数),然后把三个乘积相加(15*2+21*3+70*2)得到和233。
    3. 用233除以3,5,7三个数的最小公倍数105,得到余数23,即233%105=23。这个余数23就是符合条件的最小数。

  就这么简单。我们在感叹神奇的同时不禁想知道古人是如何想到这个方法的,有什么基本的数学依据吗?

  我们将“孙子问题”拆分成几个简单的小问题,从零开始,试图揣测古人是如何推导出这个解法的。

  首先,我们假设n1是满足除以3余2的一个数,比如2,5,8等等,也就是满足3*k+2(k>=0)的一个任意数。同样,我们假设n2是满足除以5余3的一个数,n3是满足除以7余2的一个数。

  有了前面的假设,我们先从n1这个角度出发,已知n1满足除以3余2,能不能使得 n1+n2 的和仍然满足除以3余2?进而使得n1+n2+n3的和仍然满足除以3余2?

  这就牵涉到一个最基本数学定理,如果有a%b=c,则有(a+kb)%b=c(k为非零整数),换句话说,如果一个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。这个是很好证明的。

  以此定理为依据,如果n2是3的倍数,n1+n2就依然满足除以3余2。同理,如果n3也是3的倍数,那么n1+n2+n3的和就满足除以3余2。这是从n1的角度考虑的,再从n2,n3的角度出发,我们可推导出以下三点:

    1. 为使n1+n2+n3的和满足除以3余2,n2和n3必须是3的倍数。
    2. 为使n1+n2+n3的和满足除以5余3,n1和n3必须是5的倍数。
    3. 为使n1+n2+n3的和满足除以7余2,n1和n2必须是7的倍数。

  因此,为使n1+n2+n3的和作为“孙子问题”的一个最终解,需满足:

    1. n1除以3余2,且是5和7的公倍数。
    2. n2除以5余3,且是3和7的公倍数。
    3. n3除以7余2,且是3和5的公倍数。

  所以,孙子问题解法的本质是从5和7的公倍数中找一个除以3余2的数n1,从3和7的公倍数中找一个除以5余3的数n2,从3和5的公倍数中找一个除以7余2的数n3,再将三个数相加得到解。在求n1,n2,n3时又用了一个小技巧,以n1为例,并非从5和7的公倍数中直接找一个除以3余2的数,而是先找一个除以3余1的数,再乘以2。也就是先求出5和7的公倍数模3下的逆元,再用逆元去乘余数。

  这里又有一个数学公式,如果a%b=c,那么(a*k)%b=a%b+a%b+…+a%b=c+c+…+c=kc(k>0),也就是说,如果一个除法的余数为c,那么被除数的k倍与除数相除的余数为kc。展开式中已证明。

  最后,我们还要清楚一点,n1+n2+n3只是问题的一个解,并不是最小的解。如何得到最小解?我们只需要从中最大限度的减掉掉3,5,7的公倍数105即可。道理就是前面讲过的定理“如果a%b=c,则有(a-kb)%b=c”。所以(n1+n2+n3)%105就是最终的最小解。

  这样一来就得到了中国剩余定理的公式:

设正整数两两互素,则同余方程组

有整数解。并且在模下的解是唯一的,解为

其中,而的逆元。


中国剩余定理扩展——求解模数不互质情况下的线性方程组:

  普通的中国剩余定理要求所有的互素,那么如果不互素呢,怎么求解同余方程组?

  这种情况就采用两两合并的思想,假设要合并如下两个方程:

  那么得到:

  我们需要求出一个最小的x使它满足:

  那么x1和x2就要尽可能的小,于是我们用扩展欧几里得算法求出x1的最小正整数解,将它代回a1+m1x1,得到x的一个特解,当然也是最小正整数解。我们这样所解出来的x满足什么呢?

  结合中国剩余定理的分析,我们设n1为除以m1余a1的数,n2为除以m2余a2的数;且n1为m2的倍数,n2为m1的倍数。

  

参考资料:

http://www.cnblogs.com/walker01/archive/2010/01/23/1654880.html

http://blog.csdn.net/acdreamers/article/details/8050018

时间: 2024-10-21 02:17:41

中国剩余定理学习笔记的相关文章

poj 1006 Biorhythms (中国剩余定理学习)

Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 113517   Accepted: 35597 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,

[中国剩余定理]【学习笔记】

我会手写latex了哈哈哈O(∩_∩)O 终于会插入公式了,这样就可以去抄别人的公式啦 第一段直接抄zyf2000 第二段自己写的 求解同余方程请看 http://www.cnblogs.com/candy99/p/5765986.html Chinese Remainder Theorem 中国剩余定理 求解同余方程组 $x\equiv a_1\pmod {m_1}\\ $$x\equiv a_2\pmod {m_2} \\ $$x\equiv a_3\pmod {m_3}\\$$...\\$

学习拓展中国剩余定理小结

前言 话说中国剩余定理好早就会了,但是一直木有接触过拓展的. 只知道它是个什么东东. 最近似乎需要它了,稍微学了学,似乎还挺简单的. 小结一下~ 简介 中国剩余定理我们都懂吧? 而拓展则是把它后面的模数变成一个非质数,(当然,各个方程的模数互质). 然后求出最小的x的解. 做法 似乎拓展之后很难用原来的套路来搞了. 怎么办? 我们发现,我们可以利用一些奇怪的推柿子大法来合并柿子. 考虑合并一下两个柿子: \(x \equiv c1 (mod\ m1)\) \(x \equiv c2 (mod\

C++ Primer 学习笔记_98_特殊工具与技术 --优化内存分配

特殊工具与技术 --优化内存分配 引言: C++的内存分配是一种类型化操作:new为特定类型分配内存,并在新分配的内存中构造该类型的一个对象.new表达式自动运行合适的构造函数来初始化每个动态分配的类类型对象. new基于每个对象分配内存的事实可能会对某些类强加不可接受的运行时开销,这样的类可能需要使用用户级的类类型对象分配能够更快一些.这样的类使用的通用策略是,预先分配用于创建新对象的内存,需要时在预先分配的内存中构造每个新对象. 另外一些类希望按最小尺寸为自己的数据成员分配需要的内存.例如,

Deep Learning(深度学习)学习笔记整理系列七

Deep Learning(深度学习)学习笔记整理系列 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除. 3)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢. 4)阅读本文需要机器学习.计算机视觉.神经网络等等基础(如果没有也没关系了,没

lightoj 1319 - Monkey Tradition (中国剩余定理)

1319 - Monkey Tradition PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB In 'MonkeyLand', there is a traditional game called "Bamboo Climbing". The rules of the game are as follows: 1)       There are N monkeys who play

机器学习-李航-统计学习方法学习笔记之感知机(2)

在机器学习-李航-统计学习方法学习笔记之感知机(1)中我们已经知道感知机的建模和其几何意义.相关推导也做了明确的推导.有了数学建模.我们要对模型进行计算. 感知机学习的目的是求的是一个能将正实例和负实例完全分开的分离超平面.也就是去求感知机模型中的参数w和b.学习策略也就是求解途径就是定义个经验损失函数,并将损失函数极小化.我们这儿采用的学习策略是求所有误分类点到超平面S的总距离.假设超平面s的误分类点集合为M,那么所有误分类点到超平面S的总距离为 显然损失函数L(w,b)是非负的,如果没有误分

学习笔记之TCP/IP协议的传输方式

一.通过网络发送数据,大致可以分为面向有连接与面向无连接两种类型: 1.面向无连接型包括以太网. IP.UDP等协议. 2. 面向有连接 型包括ATM.帧中继.TCP等 协议. 通过一张图了解一下: 面向有连接型 面向有连接型中,在发送数据之前,需要在收发主机之间连接一条通信线路 面向有连接型就好比人们平常打电话,输入完对方电话号码拨出之后,只有 对端拿起电话才能真正通话,通话结束后将电话机扣上就如同切断电源.因此在 面向有连接的方式下,必须在通信传输前后,专门进行建立和断开连接的处理.如果与对

Deep Learning(深度学习)学习笔记整理系列之(七)

Deep Learning(深度学习)学习笔记整理系列 [email protected] http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主