成为JavaGC专家(2)—如何监控Java垃圾回收机制

本文作者: ImportNew - 王晓杰 未经许可,禁止转载!

本文是成为Java GC专家系列文章的第二篇。在第一篇《深入浅出Java垃圾回收机制》中我们学习了不同GC算法的执行过程,GC是如何工作的,什么是新生代和老年代,你应该了解的JDK7中的5种GC类型,以及这5种类型对于应用性能的影响。

在本文中,我将解释JVM到底是如何执行垃圾回收处理的

什么是GC监控?

垃圾回收收集监控指的是搞清楚JVM如何执行GC的过程,例如,我们可以查明:

1.        何时一个新生代中的对象被移动到老年代时,所花费的时间。

2.       Stop-the-world 何时发生的,持续了多长时间。

GC监控是为了鉴别JVM是否在高效地执行GC,以及是否有必要进行额外的性能调优。基于以上信息,我们可以修改应用程序或者调整GC算法(GC优化)。

如何监控GC

有很多种方法可以监控GC,但其差别仅仅是GC操作通过何种方式展现而已。GC操作是由JVM来完成,而GC监控工具只是将JVM提供的GC信息展现给你,因此,不论你使用何种方式监控GC都将得到相同的结果。所以你也就不必去学习所有的监控GC的方法。但是因为学习每种监控方法不会占用太多时间,了解多一点可以帮助你根据不同的场景选择最为合适的方式。

下面所列的工具以及JVM参数并不适用于所有的HVM供应商。这是因为并没有关于GC信息的强制标准。本文我们将使用HotSpot JVM (Oracle JVM)。因为NHN 一直在使用Oracle (Sun) JVM,所以用它作为示例来解释我们提到的工具和JVM参数更容易些。
首先,GC监控方法根据访问的接口不同,可以分成CUI 和GUI 两大类。CUI GC监控方法使用一个独立的叫做”jstat”的CUI应用,或者在启动JVM的时候选择JVM参数”verbosegc”。
GUI GC监控由一个单独的图形化应用来完成,其中三个最常用的应用是”jconsole”, “jvisualvm” 和 “Visual GC”。
下面我们来详细学习每种方法。

jstat

jstat 是HotSpot JVM提供的一个监控工具。其他监控工具还有jps 和jstatd。有些时候,你可能需要同时使用三种工具来监控你的应用。jstat 不仅提供GC操作的信息,还提供类装载操作的信息以及运行时编译器操作的信息。本文将只涉及jstat能够提供的信息中与监控GC操作信息相关的功能。
jstat 被放置在$JDK_HOME/bin。因此只要java 和 javac能执行,jstat 同样可以执行。
你可以在命令行环境下执行如下语句。


1

2

3

4

5

6

7

8

$> jstat –gc  $<vmid$> 1000

S0C       S1C       S0U    S1U      EC         EU          OC         OU         PC         PU         YGC     YGCT    FGC      FGCT     GCT

3008.0   3072.0    0.0     1511.1   343360.0   46383.0     699072.0   283690.2   75392.0    41064.3    2540    18.454    4      1.133    19.588

3008.0   3072.0    0.0     1511.1   343360.0   47530.9     699072.0   283690.2   75392.0    41064.3    2540    18.454    4      1.133    19.588

3008.0   3072.0    0.0     1511.1   343360.0   47793.0     699072.0   283690.2   75392.0    41064.3    2540    18.454    4      1.133    19.588

$>

在上图的例子中,实际的数据会按照如下列输出:


1

S0C    S1C     S0U     S1U    EC     EU     OC     OU     PC

vmid (虚拟机 ID),正如其名字描述的,它是虚拟机的ID,Java应用不论运行在本地还是远程的机器都会拥有自己独立的vmid。运行在本地机器上的vmid称之为lvmid (本地vmid),通常是PID。如果想得到PID的值你可以使用ps命令或者windows任务管理器,但我们推荐使用jps来获取,因为PID和lvmid有时会不一致。jps 通过Java PS实现,jps命令会返回vmids和main方法的信息,正如ps命令展现PIDS和进程名字那样。
首先通过jps命令找到你要监控的Java应用的vmid,并把它作为jstat的参数。当几个WAS实例运行在同一台设备上时,如果你只使用jps命令,将只能看到启动(bootstrap)信息。我们建议在这种情况下使用ps -ef | grep java与jps配合使用。
想要得到GC性能相关的数据需要持续不断地监控,因此在执行jstat时,要规则地输出GC监控的信息。
例如,执行”jstat –gc 1000″ (或 1s)会每隔一秒展示GC监控数据。”jstat –gc 1000 10″会每隔1秒展现一次,且一共10次。


参数名称


描述


gc


输出每个堆区域的当前可用空间以及已用空间(伊甸园,幸存者等等),GC执行的总次数,GC操作累计所花费的时间。


gccapactiy


输出每个堆区域的最小空间限制(ms)/最大空间限制(mx),当前大小,每个区域之上执行GC的次数。(不输出当前已用空间以及GC执行时间)。


gccause


输出-gcutil提供的信息以及最后一次执行GC的发生原因和当前所执行的GC的发生原因


gcnew


输出新生代空间的GC性能数据


gcnewcapacity


输出新生代空间的大小的统计数据。


gcold


输出老年代空间的GC性能数据。


gcoldcapacity


输出老年代空间的大小的统计数据。


gcpermcapacity


输出持久带空间的大小的统计数据。


gcutil


输出每个堆区域使用占比,以及GC执行的总次数和GC操作所花费的事件。

你可以只关心那些最常用的命令,你会经常用到 -gcutil (或-gccause), -gc and –gccapacity。

·         -gcutil 被用于检查堆间的使用情况,GC执行的次数以及GC操作所花费的时间。

·         -gccapacity以及其他的参数可以用于检查实际分配内存的大小。

使用-gc 参数你可以看到如下输出:


1

2

3

4

S0C      S1C    …   GCT

1248.0   896.0  …   1.246

1248.0   896.0  …   1.246

…        …      …   …

不同的jstat参数输出不同类型的列,如下表所示,根据你使用的”jstat option”会输出不同列的信息。

说明 Jstat参数
S0C 输出Survivor0空间的大小。单位KB。 -gc
-gccapacity
-gcnew
-gcnewcapacity
S1C 输出Survivor1空间的大小。单位KB。 -gc
-gccapacity
-gcnew
-gcnewcapacity
S0U 输出Survivor0已用空间的大小。单位KB。 -gc
-gcnew
S1U 输出Survivor1已用空间的大小。单位KB。 -gc
-gcnew
EC 输出Eden空间的大小。单位KB。 -gc
-gccapacity
-gcnew
-gcnewcapacity
EU 输出Eden已用空间的大小。单位KB。 -gc
-gcnew
OC 输出老年代空间的大小。单位KB。 -gc
-gccapacity
-gcold
-gcoldcapacity
OU 输出老年代已用空间的大小。单位KB。 -gc
-gcold
PC 输出持久代空间的大小。单位KB。 -gc
-gccapacity
-gcold
-gcoldcapacity
-gcpermcapacity
PU 输出持久代已用空间的大小。单位KB。 -gc
-gcold
YGC 新生代空间GC时间发生的次数。 -gc
-gccapacity
-gcnew
-gcnewcapacity
-gcold
-gcoldcapacity
-gcpermcapacity
-gcutil
-gccause
YGCT 新生代GC处理花费的时间。 -gc
-gcnew
-gcutil
-gccause
FGC full GC发生的次数。 -gc
-gccapacity
-gcnew
-gcnewcapacity
-gcold
-gcoldcapacity
-gcpermcapacity
-gcutil
-gccause
FGCT full GC操作花费的时间 -gc
-gcold
-gcoldcapacity
-gcpermcapacity
-gcutil
-gccause
GCT GC操作花费的总时间。 -gc
-gcold
-gcoldcapacity
-gcpermcapacity
-gcutil
-gccause
NGCMN 新生代最小空间容量,单位KB。 -gccapacity
-gcnewcapacity
NGCMX 新生代最大空间容量,单位KB。 -gccapacity
-gcnewcapacity
NGC 新生代当前空间容量,单位KB。 -gccapacity
-gcnewcapacity
OGCMN 老年代最小空间容量,单位KB。 -gccapacity
-gcoldcapacity
OGCMX 老年代最大空间容量,单位KB。 -gccapacity
-gcoldcapacity
OGC 老年代当前空间容量制,单位KB。 -gccapacity
-gcoldcapacity
PGCMN 持久代最小空间容量,单位KB。 -gccapacity
-gcpermcapacity
PGCMX 持久代最大空间容量,单位KB。 -gccapacity
-gcpermcapacity
PGC 持久代当前空间容量,单位KB。 -gccapacity
-gcpermcapacity
PC 持久代当前空间大小,单位KB -gccapacity
-gcpermcapacity
PU 持久代当前已用空间大小,单位KB -gc
-gcold
LGCC 最后一次GC发生的原因 -gccause
GCC 当前GC发生的原因 -gccause
TT 老年化阈值。被移动到老年代之前,在新生代空存活的次数。 -gcnew
MTT 最大老年化阈值。被移动到老年代之前,在新生代空存活的次数。 -gcnew
DSS 幸存者区所需空间大小,单位KB。 -gcnew

jstat 的好处是它可以持续的监控GC操作数据,不论Java应用是运行在本地还是远程,只要有控制台的地方就可以使用。当使用–gcutil 会输出如下信息。在GC优化的时候,你需要特别注意YGC, YGCT, FGC, FGCT 和GCT。


1

2

3

4

S0      S1       E        O        P        YGC    YGCT     FGC    FGCT     GCT

0.00    66.44    54.12    10.58    86.63    217    0.928     2     0.067    0.995

0.00    66.44    54.12    10.58    86.63    217    0.928     2     0.067    0.995

0.00    66.44    54.12    10.58    86.63    217    0.928     2     0.067    0.995

这些信息很重要,因为它们展示了GC处理到底花费了多少时间。
在这个例子中,YGC 是217而YGCT 是0.928,这样在简单的计算数据平均数后,你可以知道每次新生代的GC大概需要4ms(0.004秒),而full GC的平均时间为33ms。
但是,只看数据平均数经常无法分析出真正的GC问题。这是主要是因为GC操作时间严重的偏差(换句话说,假如两次full GC的时间是 67ms,那么其中的一次full GC可能执行了10ms而另一个可能执行了57ms。)为了更好地检测每次GC处理时间,最好使用 –verbosegc来替代数据平均数。

-verbosegc

-verbosegc 是在启动一个Java应用时可以指定的JVM参数之一。而jstat 可以监控任何JVM应用,即便它没有制定任何参数。 -verbosegc 需要在启动的时候指定,因此你可能会认为它没有必要(因为jstat可以替代之)。但是, -verbosegc 会以更浅显易懂的方式展现GC发生的结果,因此他对于监控监控GC信息十分有用。

  jstat -verbosegc
监控对象 运行在本机的Java应用可以把日志输出到终端上,或者借助jstatd命令通过网络连接远程的Java应用。 只有那些把-verbogc作为启动参数的JVM。
输出信息 堆状态(已用空间,最大限制,GC执行次数/时间,等等) 执行GC前后新生代和老年代空间大小,GC执行时间。
输出时间 Every designated time
每次设定好的时间。
每次GC发生的时候。
何时有用。 当你试图观察堆空间变化情况 当你试图了解单次GC产生的效果。

下面是-verbosegc 的可用参数
· -XX:+PrintGCDetails
· -XX:+PrintGCTimeStamps
· -XX:+PrintHeapAtGC
· -XX:+PrintGCDateStamps (from JDK 6 update 4)

如果只是用了 -verbosegc 。那么默认会加上 -XX:+PrintGCDetails。 –verbosgc 的附加参数并不是独立的。而是经常组合起来使用。
使用 –verbosegc后,每次GC发生你都会看到如下格式的结果。

[GC [<collector>: <starting occupancy1> -> <ending occupancy1>, <pause time1> secs] <starting occupancy3> -> <ending occupancy3>, <pause time3> secs]

收集器 minor gc使用的收集器的名字。
starting occupancy1 GC执行前新生代空间大小。
ending occupancy1 GC执行后新生代空间大小。
pause time1 因为执行minor GC,Java应用暂停的时间。
starting occupancy3 GC执行前堆区域总大小
ending occupancy3 GC执行后堆区域总大小
pause time3 Java应用由于执行堆空间GC(包括major GC)而停止的时间。

这是-verbosegc 输出的minor GC的例子。


1

2

3

4

S0    S1     E      O      P        YGC    YGCT    FGC    FGCT     GCT

0.00  66.44  54.12  10.58  86.63    217    0.928     2    0.067    0.995

0.00  66.44  54.12  10.58  86.63    217    0.928     2    0.067    0.995

0.00  66.44  54.12  10.58  86.63    217    0.928     2    0.067    0.995

这是 Full GC发生时的例子


1

[Full GC [Tenured: 3485K->4095K(4096K), 0.1745373 secs] 61244K->7418K(63104K), [Perm : 10756K->10756K(12288K)], 0.1762129 secs] [Times: user=0.19 sys=0.00, real=0.19 secs]

如果使用了 CMS collector,那么如下CMS信息也会被输出。
由于 –verbosegc 参数在每次GC事件发生的时候都会输出日志,我们可以很轻易地观察到GC操作对于堆空间的影响。

(Java) VisualVM  + Visual GC

Java Visual VM是由Oracle JDK提供的图形化的汇总和监控工具。

图1: VisualVM 截图

除了JDK中自带的版本,你还可以直接从官网下载Visual VM。出于便利性的考虑,JDK中包含的版本被命名为Java VisualVM (jvisualvm),而官网提供的版本被命名为Visual VM (visualvm)。两者的功能基本相同,只有一些细小的差别,例如安装组件的时候。就个人而言,我更喜欢可以从官网下载的Visual VM。

图 2: Viusal GC 安装截图

通过Visual GC,你可以更直观的看到执行jstatd 所得到的信息。

图3: Visual GC 执行截图

HPJMeter

HPJMeter 可以很方便的分析 -verbosegc 输出的结果,如果Visual GC可以视作jstat的图形化版本,那么HPJMeter就相当于 –verbosgc的图形化版本。当然,GC分析只是HPJMeter提供的众多功能之一,HPJMeter是由惠普开发的性能监控工具,他可以支持HP-UX,Linux以及MS Windows。
起初,一个成为HPTune 被设计用来图形化的分析-verbosegc.输出的结果。但是,随着HPTune的功能被集成到HPJMeter 3.0版本之后,就没有必要单独下载HPTune了。但运行一个应用时, -verbosegc 的结果会被输出到一个独立的文件中。
你可以用HPJMeter直接打开这个文件,以便更直观的分析GC性能数据。

4: HPJMeter

下次预告

本文我们主要讲述了如果监控GC操作信息,这将是GC优化的前提。就我个人经验而言,我推荐使用jstat 来监控GC操作,如果你感觉到GC操作的执行时间过长,那就可以使用verbosegc 参数来分析GC。GC优化的大体步骤就是在添加verbosegc 参数后,调整GC参数,分析修改后的结果。在下一篇文章中,我们将通过真实的例子来讲解优化GC的最佳选择。
作者Sangmin Lee, NHN公司,性能工程师实验室高级工程师。

英文原文:cubrid,编译:ImportNew-王晓杰

译文地址: http://www.importnew.com/2057.html

【如需转载,请在正文中标注并保留原文链接、译文链接和译者等信息,谢谢合作!】

时间: 2024-07-28 17:17:01

成为JavaGC专家(2)—如何监控Java垃圾回收机制的相关文章

成为JavaGC专家(3)—如何监控Java垃圾回收机制(转载)

原文:http://www.importnew.com/3146.html 为什么需要优化GC 或者说的更确切一些,对于基于Java的服务,是否有必要优化GC?应该说,对于所有的基于Java的服务,并不总是需要进行GC优化,但前提是所运行的基于Java的系统,包含了如下参数或行为: 已经通过 -Xms 和–Xmx 设置了内存大小 包含了 -server 参数 系统中没有超时日志等错误日志 换句话说,如果你没有设定内存的大小,并且系统充斥着大量的超时日志时,你就需要在你的系统中进行GC优化了. 但

成为Java GC专家(3)—如何优化Java垃圾回收机制

本文作者: ImportNew - 王晓杰 未经许可,禁止转载! 本文是成为Java GC专家系列文章的第三篇.在第一篇<成为JavaGC专家Part I — 深入浅出Java垃圾回收机制>中我们学习了不同GC算法的执行过程,GC是如何工作的,什么是新生代和老年代,你应该了解的JDK7中的5种GC类型,以及这5种类型对于应用性能的影响. 在第二篇<成为JavaGC专家Part II — 如何监控Java垃圾回收机制>,我解释了JVM实际上是如何执行垃圾回收的,我们如何监控GC,以及

Java 垃圾回收机制(早期版本)

Java 垃圾回收机制在我们普通理解来看,应该视为一种低优先级的后台进程来实现的,其实早期版本的Java虚拟机并非以这种方式实现的. 先从一种很简单的垃圾回收方式开始. 引用计数 引用计数是一种简单但是速度很慢的垃圾回收技术. 每个对象都含有要给引用计数器,当有引用连接至对象时,引用计数+1. 当引用离开作用域或者被置为null时,引用计数-1. 当发现某个对象的引用计数为0时,就释放其占用的空间.   这种方法开销在整个程序生命周期中持续发生,并且该方法有个缺陷,如果对象之间存在循环引用,可能

Java垃圾回收机制以及内存泄漏

原文地址 前言 在segmentfault上看到一个问题:java有完善的GC机制,那么在java中是否会出现内存泄漏的问题,以及能否给出一个内存泄漏的案例.本问题视图给出此问题的完整答案. 垃圾回收机制简介 在程序运行过程中,每创建一个对象都会被分配一定的内存用以存储对象数据.如果只是不停的分配内存,那么程序迟早面临内存不足的问题.所以在任何语言中,都会有一个内存回收机制来释放过期对象的内存,以保证内存能够被重复利用. 内存回收机制按照实现角色的不同可以分为两种,一种是程序员手动实现内存的释放

Java垃圾回收机制--入门

Java垃圾回收机制(gc) 在程序运行过程中,每创建一个对象都会被分配一定的内存用以存储对象数据.如果一味的去占用内存而不释放,则会遇到内存溢出的问题. 在程序运行的过程中,gc会用引用计数法去统计对象被多少其他对象持有,如果对象已经没有被引用,那么该对象转变为可复活状态 (对于gc线程来说对象有三种状态: 1.     可触及状态:程序中还有变量引用,那么此对象为可触及状态. 2.     可复活状态:当程序中已经没有变量引用这个对象,那么此对象由可触及状态转为可复活状态.CG线程将在一定的

【Java】怎么回答java垃圾回收机制

(1) GC是垃圾收集的意思(Gabage Collection),内存处理是编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java提供的GC功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的,Java语言没有提供释放已分配内存的显示操作方法. (2) 对于GC来说,当程序员创建对象时,GC就开始监控这个对象的地址.大小以及使用情况.通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象.通过这种方式确定哪些对象是"可达的",哪些

Java垃圾回收机制(转)

原文链接:Java垃圾回收机制 1. 垃圾回收的意义 在C++中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前不能分配给其它对象:而在Java中,当没有对象引用指向原先分配给某个对象的内存时,该内存便成为垃圾.JVM的一个系统级线程会自动释放该内存块.垃圾回收意味着程序不再需要的对象是"无用信息",这些信息将被丢弃.当一个对象不再被引用的时候,内存回收它占领的空间,以便空间被后来的新对象使用.事实上,除了释放没用的对象,垃圾回收也可以清除内存记录碎片.由于创建对象和垃圾回

Java垃圾回收机制(GC)详解

Java垃圾回收机制(GC)详解 简介: 垃圾回收GC(Garbage Collection)是Java语言的核心技术之一,之前我们曾专门探讨过Java 7新增的垃圾回收器G1的新特性,但在JVM的内部运行机制上看,Java的垃圾回收原理与机制并未改变.垃圾收集的目的在于清除不再使用的对象.GC通过确定对象是否被活动对象引用来确定是否收集该对象.GC首先要判断该对象是否是时候可以收集.两种常用的方法是引用计数和对象引用遍历. 垃圾收集的算法分析: Java语言规范没有明确地说明JVM使用哪种垃圾

Java垃圾回收机制的工作原理

Java垃圾回收机制的工作原理 [博主]高瑞林 [博客地址]http://www.cnblogs.com/grl214 一.Java中引入垃圾回收机制的作用 当我们建完类之后,创建对象的同时,进行内存空间的分配,为了防止内存空间爆满,java引入了垃圾回收机制,将不再引用的对象进行回收,释放内存,循环渐进,从而防止内存空间不被爆满. 1.垃圾回收机制的工作原理 创建的对象存储在堆里面,把堆比喻为院子中的土地,把对象比喻为土地的管理者,院子比喻为java虚拟机,当创建一个对象时,java虚拟机将给