Java生成动态GIF图片

写selenium自动化时,为了查看运行效果,后给浏览器截图,想到可以生成gif图片来快速预览。看到已经有人实现了,直接拿过来。

共涉及到三个java文件,分别是NeuQuant.java,LZWEncoder.javaAnimatedGifEncoder.java,有了这三个文件,我们可以自己编写方法调用,代码如下:

  BufferedImage src1 = ImageIO.read(new File("Img221785570.jpg"));
  BufferedImage src2 = ImageIO.read(new File("W.gif"));
  //BufferedImage src3 = ImageIO.read(new File("c:/ship3.jpg"));
  AnimatedGifEncoder e = new AnimatedGifEncoder();
  e.setRepeat(0);
  e.start("laoma.gif");
  e.setDelay(300); // 1 frame per sec
  e.addFrame(src1);
  e.setDelay(100);
  e.addFrame(src2);
  e.setDelay(100);
  //  e.addFrame(src2);
  e.finish(); 

三个java文件源码如下:

NeuQuant.java

public class NeuQuant
    {
        protected static final int netsize = 256; /* number of colours used */
        /* four primes near 500 - assume no image has a length so large */
        /* that it is divisible by all four primes */
        protected static final int prime1 = 499;
        protected static final int prime2 = 491;
        protected static final int prime3 = 487;
        protected static final int prime4 = 503;
        protected static final int minpicturebytes = (3 * prime4);
        /* minimum size for input image */
        /* Program Skeleton
        ----------------
        [select samplefac in range 1..30]
        [read image from input file]
        pic = (unsigned char*) malloc(3*width*height);
        initnet(pic,3*width*height,samplefac);
        learn();
        unbiasnet();
        [write output image header, using writecolourmap(f)]
        inxbuild();
        write output image using inxsearch(b,g,r)      */
        /* Network Definitions
        ------------------- */
        protected static final int maxnetpos = (netsize - 1);
        protected static final int netbiasshift = 4; /* bias for colour values */
        protected static final int ncycles = 100; /* no. of learning cycles */
        /* defs for freq and bias */
        protected static final int intbiasshift = 16; /* bias for fractions */
        protected static final int intbias = (((int) 1) << intbiasshift);
        protected static final int gammashift = 10; /* gamma = 1024 */
        protected static final int gamma = (((int) 1) << gammashift);
        protected static final int betashift = 10;
        protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */
        protected static final int betagamma =
                (intbias << (gammashift - betashift));
        /* defs for decreasing radius factor */
        protected static final int initrad = (netsize >> 3); /* for 256 cols, radius starts */
        protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
        protected static final int radiusbias = (((int) 1) << radiusbiasshift);
        protected static final int initradius = (initrad * radiusbias); /* and decreases by a */
        protected static final int radiusdec = 30; /* factor of 1/30 each cycle */
        /* defs for decreasing alpha factor */
        protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */
        protected static final int initalpha = (((int) 1) << alphabiasshift);
        protected int alphadec; /* biased by 10 bits */
        /* radbias and alpharadbias used for radpower calculation */
        protected static final int radbiasshift = 8;
        protected static final int radbias = (((int) 1) << radbiasshift);
        protected static final int alpharadbshift = (alphabiasshift + radbiasshift);
        protected static final int alpharadbias = (((int) 1) << alpharadbshift);
        /* Types and Global Variables
        -------------------------- */
        protected byte[] thepicture; /* the input image itself */
        protected int lengthcount; /* lengthcount = H*W*3 */
        protected int samplefac; /* sampling factor 1..30 */
        //   typedef int pixel[4];                /* BGRc */
        protected int[][] network; /* the network itself - [netsize][4] */
        protected int[] netindex = new int[256];
        /* for network lookup - really 256 */
        protected int[] bias = new int[netsize];
        /* bias and freq arrays for learning */
        protected int[] freq = new int[netsize];
        protected int[] radpower = new int[initrad];
        /* radpower for precomputation */
        /* Initialise network in range (0,0,0) to (255,255,255) and set parameters
        ----------------------------------------------------------------------- */
        public NeuQuant(byte[] thepic, int len, int sample) {
            int i;
            int[] p;
            thepicture = thepic;
            lengthcount = len;
            samplefac = sample;
            network = new int[netsize][];
            for (i = 0; i < netsize; i++) {
                network[i] = new int[4];
                p = network[i];
                p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
                freq[i] = intbias / netsize; /* 1/netsize */
                bias[i] = 0;
            }
        }
        public byte[] colorMap() {
            byte[] map = new byte[3 * netsize];
            int[] index = new int[netsize];
            for (int i = 0; i < netsize; i++)
                index[network[i][3]] = i;
            int k = 0;
            for (int i = 0; i < netsize; i++) {
                int j = index[i];
                map[k++] = (byte) (network[j][0]);
                map[k++] = (byte) (network[j][1]);
                map[k++] = (byte) (network[j][2]);
            }
            return map;
        }
        /* Insertion sort of network and building of netindex[0..255] (to do after unbias)
           ------------------------------------------------------------------------------- */
        public void inxbuild() {
            int i, j, smallpos, smallval;
            int[] p;
            int[] q;
            int previouscol, startpos;
            previouscol = 0;
            startpos = 0;
            for (i = 0; i < netsize; i++) {
                p = network[i];
                smallpos = i;
                smallval = p[1]; /* index on g */
       /* find smallest in i..netsize-1 */
                for (j = i + 1; j < netsize; j++) {
                    q = network[j];
                    if (q[1] < smallval) { /* index on g */
                        smallpos = j;
                        smallval = q[1]; /* index on g */
                    }
                }
                q = network[smallpos];
       /* swap p (i) and q (smallpos) entries */
                if (i != smallpos) {
                    j = q[0];
                    q[0] = p[0];
                    p[0] = j;
                    j = q[1];
                    q[1] = p[1];
                    p[1] = j;
                    j = q[2];
                    q[2] = p[2];
                    p[2] = j;
                    j = q[3];
                    q[3] = p[3];
                    p[3] = j;
                }
       /* smallval entry is now in position i */
                if (smallval != previouscol) {
                    netindex[previouscol] = (startpos + i) >> 1;
                    for (j = previouscol + 1; j < smallval; j++)
                        netindex[j] = i;
                    previouscol = smallval;
                    startpos = i;
                }
            }
            netindex[previouscol] = (startpos + maxnetpos) >> 1;
            for (j = previouscol + 1; j < 256; j++)
                netindex[j] = maxnetpos; /* really 256 */
        }
        /* Main Learning Loop
           ------------------ */
        public void learn() {
            int i, j, b, g, r;
            int radius, rad, alpha, step, delta, samplepixels;
            byte[] p;
            int pix, lim;
            if (lengthcount < minpicturebytes)
                samplefac = 1;
            alphadec = 30 + ((samplefac - 1) / 3);
            p = thepicture;
            pix = 0;
            lim = lengthcount;
            samplepixels = lengthcount / (3 * samplefac);
            delta = samplepixels / ncycles;
            alpha = initalpha;
            radius = initradius;
            rad = radius >> radiusbiasshift;
            if (rad <= 1)
                rad = 0;
            for (i = 0; i < rad; i++)
                radpower[i] =
                        alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
            //fprintf(stderr,"beginning 1D learning: initial radius=%d/n", rad);
            if (lengthcount < minpicturebytes)
                step = 3;
            else if ((lengthcount % prime1) != 0)
                step = 3 * prime1;
            else {
                if ((lengthcount % prime2) != 0)
                    step = 3 * prime2;
                else {
                    if ((lengthcount % prime3) != 0)
                        step = 3 * prime3;
                    else
                        step = 3 * prime4;
                }
            }
            i = 0;
            while (i < samplepixels) {
                b = (p[pix + 0] & 0xff) << netbiasshift;
                g = (p[pix + 1] & 0xff) << netbiasshift;
                r = (p[pix + 2] & 0xff) << netbiasshift;
                j = contest(b, g, r);
                altersingle(alpha, j, b, g, r);
                if (rad != 0)
                    alterneigh(rad, j, b, g, r); /* alter neighbours */
                pix += step;
                if (pix >= lim)
                    pix -= lengthcount;
                i++;
                if (delta == 0)
                    delta = 1;
                if (i % delta == 0) {
                    alpha -= alpha / alphadec;
                    radius -= radius / radiusdec;
                    rad = radius >> radiusbiasshift;
                    if (rad <= 1)
                        rad = 0;
                    for (j = 0; j < rad; j++)
                        radpower[j] =
                                alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
                }
            }
            //fprintf(stderr,"finished 1D learning: final alpha=%f !/n",((float)alpha)/initalpha);
        }
        /* Search for BGR values 0..255 (after net is unbiased) and return colour index
           ---------------------------------------------------------------------------- */
        public int map(int b, int g, int r) {
            int i, j, dist, a, bestd;
            int[] p;
            int best;
            bestd = 1000; /* biggest possible dist is 256*3 */
            best = -1;
            i = netindex[g]; /* index on g */
            j = i - 1; /* start at netindex[g] and work outwards */
            while ((i < netsize) || (j >= 0)) {
                if (i < netsize) {
                    p = network[i];
                    dist = p[1] - g; /* inx key */
                    if (dist >= bestd)
                        i = netsize; /* stop iter */
                    else {
                        i++;
                        if (dist < 0)
                            dist = -dist;
                        a = p[0] - b;
                        if (a < 0)
                            a = -a;
                        dist += a;
                        if (dist < bestd) {
                            a = p[2] - r;
                            if (a < 0)
                                a = -a;
                            dist += a;
                            if (dist < bestd) {
                                bestd = dist;
                                best = p[3];
                            }
                        }
                    }
                }
                if (j >= 0) {
                    p = network[j];
                    dist = g - p[1]; /* inx key - reverse dif */
                    if (dist >= bestd)
                        j = -1; /* stop iter */
                    else {
                        j--;
                        if (dist < 0)
                            dist = -dist;
                        a = p[0] - b;
                        if (a < 0)
                            a = -a;
                        dist += a;
                        if (dist < bestd) {
                            a = p[2] - r;
                            if (a < 0)
                                a = -a;
                            dist += a;
                            if (dist < bestd) {
                                bestd = dist;
                                best = p[3];
                            }
                        }
                    }
                }
            }
            return (best);
        }
        public byte[] process() {
            learn();
            unbiasnet();
            inxbuild();
            return colorMap();
        }
        /* Unbias network to give byte values 0..255 and record position i to prepare for sort
           ----------------------------------------------------------------------------------- */
        public void unbiasnet() {
            int i, j;
            for (i = 0; i < netsize; i++) {
                network[i][0] >>= netbiasshift;
                network[i][1] >>= netbiasshift;
                network[i][2] >>= netbiasshift;
                network[i][3] = i; /* record colour no */
            }
        }
        /* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
           --------------------------------------------------------------------------------- */
        protected void alterneigh(int rad, int i, int b, int g, int r) {
            int j, k, lo, hi, a, m;
            int[] p;
            lo = i - rad;
            if (lo < -1)
                lo = -1;
            hi = i + rad;
            if (hi > netsize)
                hi = netsize;
            j = i + 1;
            k = i - 1;
            m = 1;
            while ((j < hi) || (k > lo)) {
                a = radpower[m++];
                if (j < hi) {
                    p = network[j++];
                    try {
                        p[0] -= (a * (p[0] - b)) / alpharadbias;
                        p[1] -= (a * (p[1] - g)) / alpharadbias;
                        p[2] -= (a * (p[2] - r)) / alpharadbias;
                    } catch (Exception e) {
                    } // prevents 1.3 miscompilation
                }
                if (k > lo) {
                    p = network[k--];
                    try {
                        p[0] -= (a * (p[0] - b)) / alpharadbias;
                        p[1] -= (a * (p[1] - g)) / alpharadbias;
                        p[2] -= (a * (p[2] - r)) / alpharadbias;
                    } catch (Exception e) {
                    }
                }
            }
        }
        /* Move neuron i towards biased (b,g,r) by factor alpha
           ---------------------------------------------------- */
        protected void altersingle(int alpha, int i, int b, int g, int r) {
      /* alter hit neuron */
            int[] n = network[i];
            n[0] -= (alpha * (n[0] - b)) / initalpha;
            n[1] -= (alpha * (n[1] - g)) / initalpha;
            n[2] -= (alpha * (n[2] - r)) / initalpha;
        }
        /* Search for biased BGR values
           ---------------------------- */
        protected int contest(int b, int g, int r) {
      /* finds closest neuron (min dist) and updates freq */
      /* finds best neuron (min dist-bias) and returns position */
      /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
      /* bias[i] = gamma*((1/netsize)-freq[i]) */
            int i, dist, a, biasdist, betafreq;
            int bestpos, bestbiaspos, bestd, bestbiasd;
            int[] n;
            bestd = ~(((int) 1) << 31);
            bestbiasd = bestd;
            bestpos = -1;
            bestbiaspos = bestpos;
            for (i = 0; i < netsize; i++) {
                n = network[i];
                dist = n[0] - b;
                if (dist < 0)
                    dist = -dist;
                a = n[1] - g;
                if (a < 0)
                    a = -a;
                dist += a;
                a = n[2] - r;
                if (a < 0)
                    a = -a;
                dist += a;
                if (dist < bestd) {
                    bestd = dist;
                    bestpos = i;
                }
                biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
                if (biasdist < bestbiasd) {
                    bestbiasd = biasdist;
                    bestbiaspos = i;
                }
                betafreq = (freq[i] >> betashift);
                freq[i] -= betafreq;
                bias[i] += (betafreq << gammashift);
            }
            freq[bestpos] += beta;
            bias[bestpos] -= betagamma;
            return (bestbiaspos);
        }
    }

LZWEncoder.java源码如下:

package com.yeetrack.selenium.Image;

    import java.io.OutputStream;
    import java.io.IOException;
    //==============================================================================
    //  Adapted from Jef Poskanzer‘s Java port by way of J. M. G. Elliott.
    //  K Weiner 12/00
    class LZWEncoder {
        private static final int EOF = -1;
        private int imgW, imgH;
        private byte[] pixAry;
        private int initCodeSize;
        private int remaining;
        private int curPixel;
        // GIFCOMPR.C       - GIF Image compression routines
        //
        // Lempel-Ziv compression based on ‘compress‘.  GIF modifications by
        // David Rowley ([email protected])
        // General DEFINEs
        static final int BITS = 12;
        static final int HSIZE = 5003; // 80% occupancy
        // GIF Image compression - modified ‘compress‘
        //
        // Based on: compress.c - File compression ala IEEE Computer, June 1984.
        //
        // By Authors:  Spencer W. Thomas      (decvax!harpo!utah-cs!utah-gr!thomas)
        //              Jim McKie              (decvax!mcvax!jim)
        //              Steve Davies           (decvax!vax135!petsd!peora!srd)
        //              Ken Turkowski          (decvax!decwrl!turtlevax!ken)
        //              James A. Woods         (decvax!ihnp4!ames!jaw)
        //              Joe Orost              (decvax!vax135!petsd!joe)
        int n_bits; // number of bits/code
        int maxbits = BITS; // user settable max # bits/code
        int maxcode; // maximum code, given n_bits
        int maxmaxcode = 1 << BITS; // should NEVER generate this code
        int[] htab = new int[HSIZE];
        int[] codetab = new int[HSIZE];
        int hsize = HSIZE; // for dynamic table sizing
        int free_ent = 0; // first unused entry
        // block compression parameters -- after all codes are used up,
        // and compression rate changes, start over.
        boolean clear_flg = false;
        // Algorithm:  use open addressing double hashing (no chaining) on the
        // prefix code / next character combination.  We do a variant of Knuth‘s
        // algorithm D (vol. 3, sec. 6.4) along with G. Knott‘s relatively-prime
        // secondary probe.  Here, the modular division first probe is gives way
        // to a faster exclusive-or manipulation.  Also do block compression with
        // an adaptive reset, whereby the code table is cleared when the compression
        // ratio decreases, but after the table fills.  The variable-length output
        // codes are re-sized at this point, and a special CLEAR code is generated
        // for the decompressor.  Late addition:  construct the table according to
        // file size for noticeable speed improvement on small files.  Please direct
        // questions about this implementation to ames!jaw.
        int g_init_bits;
        int ClearCode;
        int EOFCode;
        // output
        //
        // Output the given code.
        // Inputs:
        //      code:   A n_bits-bit integer.  If == -1, then EOF.  This assumes
        //              that n_bits =< wordsize - 1.
        // Outputs:
        //      Outputs code to the file.
        // Assumptions:
        //      Chars are 8 bits long.
        // Algorithm:
        //      Maintain a BITS character long buffer (so that 8 codes will
        // fit in it exactly).  Use the VAX insv instruction to insert each
        // code in turn.  When the buffer fills up empty it and start over.
        int cur_accum = 0;
        int cur_bits = 0;
        int masks[] =
                {
                        0x0000,
                        0x0001,
                        0x0003,
                        0x0007,
                        0x000F,
                        0x001F,
                        0x003F,
                        0x007F,
                        0x00FF,
                        0x01FF,
                        0x03FF,
                        0x07FF,
                        0x0FFF,
                        0x1FFF,
                        0x3FFF,
                        0x7FFF,
                        0xFFFF };
        // Number of characters so far in this ‘packet‘
        int a_count;
        // Define the storage for the packet accumulator
        byte[] accum = new byte[256];
        //----------------------------------------------------------------------------
        LZWEncoder(int width, int height, byte[] pixels, int color_depth) {
            imgW = width;
            imgH = height;
            pixAry = pixels;
            initCodeSize = Math.max(2, color_depth);
        }
        // Add a character to the end of the current packet, and if it is 254
        // characters, flush the packet to disk.
        void char_out(byte c, OutputStream outs) throws IOException {
            accum[a_count++] = c;
            if (a_count >= 254)
                flush_char(outs);
        }
        // Clear out the hash table
        // table clear for block compress
        void cl_block(OutputStream outs) throws IOException {
            cl_hash(hsize);
            free_ent = ClearCode + 2;
            clear_flg = true;
            output(ClearCode, outs);
        }
        // reset code table
        void cl_hash(int hsize) {
            for (int i = 0; i < hsize; ++i)
                htab[i] = -1;
        }
        void compress(int init_bits, OutputStream outs) throws IOException {
            int fcode;
            int i /* = 0 */;
            int c;
            int ent;
            int disp;
            int hsize_reg;
            int hshift;
            // Set up the globals:  g_init_bits - initial number of bits
            g_init_bits = init_bits;
            // Set up the necessary values
            clear_flg = false;
            n_bits = g_init_bits;
            maxcode = MAXCODE(n_bits);
            ClearCode = 1 << (init_bits - 1);
            EOFCode = ClearCode + 1;
            free_ent = ClearCode + 2;
            a_count = 0; // clear packet
            ent = nextPixel();
            hshift = 0;
            for (fcode = hsize; fcode < 65536; fcode *= 2)
                ++hshift;
            hshift = 8 - hshift; // set hash code range bound
            hsize_reg = hsize;
            cl_hash(hsize_reg); // clear hash table
            output(ClearCode, outs);
            outer_loop : while ((c = nextPixel()) != EOF) {
                fcode = (c << maxbits) + ent;
                i = (c << hshift) ^ ent; // xor hashing
                if (htab[i] == fcode) {
                    ent = codetab[i];
                    continue;
                } else if (htab[i] >= 0) // non-empty slot
                {
                    disp = hsize_reg - i; // secondary hash (after G. Knott)
                    if (i == 0)
                        disp = 1;
                    do {
                        if ((i -= disp) < 0)
                            i += hsize_reg;
                        if (htab[i] == fcode) {
                            ent = codetab[i];
                            continue outer_loop;
                        }
                    } while (htab[i] >= 0);
                }
                output(ent, outs);
                ent = c;
                if (free_ent < maxmaxcode) {
                    codetab[i] = free_ent++; // code -> hashtable
                    htab[i] = fcode;
                } else
                    cl_block(outs);
            }
            // Put out the final code.
            output(ent, outs);
            output(EOFCode, outs);
        }
        //----------------------------------------------------------------------------
        void encode(OutputStream os) throws IOException {
            os.write(initCodeSize); // write "initial code size" byte
            remaining = imgW * imgH; // reset navigation variables
            curPixel = 0;
            compress(initCodeSize + 1, os); // compress and write the pixel data
            os.write(0); // write block terminator
        }
        // Flush the packet to disk, and reset the accumulator
        void flush_char(OutputStream outs) throws IOException {
            if (a_count > 0) {
                outs.write(a_count);
                outs.write(accum, 0, a_count);
                a_count = 0;
            }
        }
        final int MAXCODE(int n_bits) {
            return (1 << n_bits) - 1;
        }
        //----------------------------------------------------------------------------
        // Return the next pixel from the image
        //----------------------------------------------------------------------------
        private int nextPixel() {
            if (remaining == 0)
                return EOF;
            --remaining;
            byte pix = pixAry[curPixel++];
            return pix & 0xff;
        }
        void output(int code, OutputStream outs) throws IOException {
            cur_accum &= masks[cur_bits];
            if (cur_bits > 0)
                cur_accum |= (code << cur_bits);
            else
                cur_accum = code;
            cur_bits += n_bits;
            while (cur_bits >= 8) {
                char_out((byte) (cur_accum & 0xff), outs);
                cur_accum >>= 8;
                cur_bits -= 8;
            }
            // If the next entry is going to be too big for the code size,
            // then increase it, if possible.
            if (free_ent > maxcode || clear_flg) {
                if (clear_flg) {
                    maxcode = MAXCODE(n_bits = g_init_bits);
                    clear_flg = false;
                } else {
                    ++n_bits;
                    if (n_bits == maxbits)
                        maxcode = maxmaxcode;
                    else
                        maxcode = MAXCODE(n_bits);
                }
            }
            if (code == EOFCode) {
                // At EOF, write the rest of the buffer.
                while (cur_bits > 0) {
                    char_out((byte) (cur_accum & 0xff), outs);
                    cur_accum >>= 8;
                    cur_bits -= 8;
                }
                flush_char(outs);
            }
        }
    }

AnimatedGifEncoder.java源码如下:

package com.yeetrack.selenium.Image;

    import java.io.*;
    import java.awt.*;
    import java.awt.image.*;

    /**
     * Class AnimatedGifEncoder - Encodes a GIF file consisting of one or
     * more frames.
     * <pre>
     * Example:
     *    AnimatedGifEncoder e = new AnimatedGifEncoder();
     *    e.start(outputFileName);
     *    e.setDelay(1000);   // 1 frame per sec
     *    e.addFrame(image1);
     *    e.addFrame(image2);
     *    e.finish();
     * </pre>
     * No copyright asserted on the source code of this class.  May be used
     * for any purpose, however, refer to the Unisys LZW patent for restrictions
     * on use of the associated LZWEncoder class.  Please forward any corrections
     * to [email protected]
     *
     * @author Kevin Weiner, FM Software
     * @version 1.03 November 2003
     *
     */

    public class AnimatedGifEncoder {

        protected int width; // image size
        protected int height;
        protected Color transparent = null; // transparent color if given
        protected int transIndex; // transparent index in color table
        protected int repeat = -1; // no repeat
        protected int delay = 0; // frame delay (hundredths)
        protected boolean started = false; // ready to output frames
        protected OutputStream out;
        protected BufferedImage image; // current frame
        protected byte[] pixels; // BGR byte array from frame
        protected byte[] indexedPixels; // converted frame indexed to palette
        protected int colorDepth; // number of bit planes
        protected byte[] colorTab; // RGB palette
        protected boolean[] usedEntry = new boolean[256]; // active palette entries
        protected int palSize = 7; // color table size (bits-1)
        protected int dispose = -1; // disposal code (-1 = use default)
        protected boolean closeStream = false; // close stream when finished
        protected boolean firstFrame = true;
        protected boolean sizeSet = false; // if false, get size from first frame
        protected int sample = 10; // default sample interval for quantizer
        /**
         * Sets the delay time between each frame, or changes it
         * for subsequent frames (applies to last frame added).
         *
         * @param ms int delay time in milliseconds
         */
        public void setDelay(int ms) {
            delay = Math.round(ms / 10.0f);
        }
        /**
         * Sets the GIF frame disposal code for the last added frame
         * and any subsequent frames.  Default is 0 if no transparent
         * color has been set, otherwise 2.
         * @param code int disposal code.
         */
        public void setDispose(int code) {
            if (code >= 0) {
                dispose = code;
            }
        }
        /**
         * Sets the number of times the set of GIF frames
         * should be played.  Default is 1; 0 means play
         * indefinitely.  Must be invoked before the first
         * image is added.
         *
         * @param iter int number of iterations.
         * @return
         */
        public void setRepeat(int iter) {
            if (iter >= 0) {
                repeat = iter;
            }
        }
        /**
         * Sets the transparent color for the last added frame
         * and any subsequent frames.
         * Since all colors are subject to modification
         * in the quantization process, the color in the final
         * palette for each frame closest to the given color
         * becomes the transparent color for that frame.
         * May be set to null to indicate no transparent color.
         *
         * @param c Color to be treated as transparent on display.
         */
        public void setTransparent(Color c) {
            transparent = c;
        }
        /**
         * Adds next GIF frame.  The frame is not written immediately, but is
         * actually deferred until the next frame is received so that timing
         * data can be inserted.  Invoking <code>finish()</code> flushes all
         * frames.  If <code>setSize</code> was not invoked, the size of the
         * first image is used for all subsequent frames.
         *
         * @param im BufferedImage containing frame to write.
         * @return true if successful.
         */
        public boolean addFrame(BufferedImage im) {
            if ((im == null) || !started) {
                return false;
            }
            boolean ok = true;
            try {
                if (!sizeSet) {
                    // use first frame‘s size
                    setSize(im.getWidth(), im.getHeight());
                }
                image = im;
                getImagePixels(); // convert to correct format if necessary
                analyzePixels(); // build color table & map pixels
                if (firstFrame) {
                    writeLSD(); // logical screen descriptior
                    writePalette(); // global color table
                    if (repeat >= 0) {
                        // use NS app extension to indicate reps
                        writeNetscapeExt();
                    }
                }
                writeGraphicCtrlExt(); // write graphic control extension
                writeImageDesc(); // image descriptor
                if (!firstFrame) {
                    writePalette(); // local color table
                }
                writePixels(); // encode and write pixel data
                firstFrame = false;
            } catch (IOException e) {
                ok = false;
            }
            return ok;
        }
        /**
         * Flushes any pending data and closes output file.
         * If writing to an OutputStream, the stream is not
         * closed.
         */
        public boolean finish() {
            if (!started) return false;
            boolean ok = true;
            started = false;
            try {
                out.write(0x3b); // gif trailer
                out.flush();
                if (closeStream) {
                    out.close();
                }
            } catch (IOException e) {
                ok = false;
            }
            // reset for subsequent use
            transIndex = 0;
            out = null;
            image = null;
            pixels = null;
            indexedPixels = null;
            colorTab = null;
            closeStream = false;
            firstFrame = true;
            return ok;
        }
        /**
         * Sets frame rate in frames per second.  Equivalent to
         * <code>setDelay(1000/fps)</code>.
         *
         * @param fps float frame rate (frames per second)
         */
        public void setFrameRate(float fps) {
            if (fps != 0f) {
                delay = Math.round(100f / fps);
            }
        }
        /**
         * Sets quality of color quantization (conversion of images
         * to the maximum 256 colors allowed by the GIF specification).
         * Lower values (minimum = 1) produce better colors, but slow
         * processing significantly.  10 is the default, and produces
         * good color mapping at reasonable speeds.  Values greater
         * than 20 do not yield significant improvements in speed.
         *
         * @param quality int greater than 0.
         * @return
         */
        public void setQuality(int quality) {
            if (quality < 1) quality = 1;
            sample = quality;
        }
        /**
         * Sets the GIF frame size.  The default size is the
         * size of the first frame added if this method is
         * not invoked.
         *
         * @param w int frame width.
         * @param h int frame width.
         */
        public void setSize(int w, int h) {
            if (started && !firstFrame) return;
            width = w;
            height = h;
            if (width < 1) width = 320;
            if (height < 1) height = 240;
            sizeSet = true;
        }
        /**
         * Initiates GIF file creation on the given stream.  The stream
         * is not closed automatically.
         *
         * @param os OutputStream on which GIF images are written.
         * @return false if initial write failed.
         */
        public boolean start(OutputStream os) {
            if (os == null) return false;
            boolean ok = true;
            closeStream = false;
            out = os;
            try {
                writeString("GIF89a"); // header
            } catch (IOException e) {
                ok = false;
            }
            return started = ok;
        }
        /**
         * Initiates writing of a GIF file with the specified name.
         *
         * @param file String containing output file name.
         * @return false if open or initial write failed.
         */
        public boolean start(String file) {
            boolean ok = true;
            try {
                out = new BufferedOutputStream(new FileOutputStream(file));
                ok = start(out);
                closeStream = true;
            } catch (IOException e) {
                ok = false;
            }
            return started = ok;
        }
        /**
         * Analyzes image colors and creates color map.
         */
        protected void analyzePixels() {
            int len = pixels.length;
            int nPix = len / 3;
            indexedPixels = new byte[nPix];
            NeuQuant nq = new NeuQuant(pixels, len, sample);
            // initialize quantizer
            colorTab = nq.process(); // create reduced palette
            // convert map from BGR to RGB
            for (int i = 0; i < colorTab.length; i += 3) {
                byte temp = colorTab[i];
                colorTab[i] = colorTab[i + 2];
                colorTab[i + 2] = temp;
                usedEntry[i / 3] = false;
            }
            // map image pixels to new palette
            int k = 0;
            for (int i = 0; i < nPix; i++) {
                int index =
                        nq.map(pixels[k++] & 0xff,
                                pixels[k++] & 0xff,
                                pixels[k++] & 0xff);
                usedEntry[index] = true;
                indexedPixels[i] = (byte) index;
            }
            pixels = null;
            colorDepth = 8;
            palSize = 7;
            // get closest match to transparent color if specified
            if (transparent != null) {
                transIndex = findClosest(transparent);
            }
        }
        /**
         * Returns index of palette color closest to c
         *
         */
        protected int findClosest(Color c) {
            if (colorTab == null) return -1;
            int r = c.getRed();
            int g = c.getGreen();
            int b = c.getBlue();
            int minpos = 0;
            int dmin = 256 * 256 * 256;
            int len = colorTab.length;
            for (int i = 0; i < len;) {
                int dr = r - (colorTab[i++] & 0xff);
                int dg = g - (colorTab[i++] & 0xff);
                int db = b - (colorTab[i] & 0xff);
                int d = dr * dr + dg * dg + db * db;
                int index = i / 3;
                if (usedEntry[index] && (d < dmin)) {
                    dmin = d;
                    minpos = index;
                }
                i++;
            }
            return minpos;
        }
        /**
         * Extracts image pixels into byte array "pixels"
         */
        protected void getImagePixels() {
            int w = image.getWidth();
            int h = image.getHeight();
            int type = image.getType();
            if ((w != width)
                    || (h != height)
                    || (type != BufferedImage.TYPE_3BYTE_BGR)) {
                // create new image with right size/format
                BufferedImage temp =
                        new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR);
                Graphics2D g = temp.createGraphics();
                g.drawImage(image, 0, 0, null);
                image = temp;
            }
            pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
        }
        /**
         * Writes Graphic Control Extension
         */
        protected void writeGraphicCtrlExt() throws IOException {
            out.write(0x21); // extension introducer
            out.write(0xf9); // GCE label
            out.write(4); // data block size
            int transp, disp;
            if (transparent == null) {
                transp = 0;
                disp = 0; // dispose = no action
            } else {
                transp = 1;
                disp = 2; // force clear if using transparent color
            }
            if (dispose >= 0) {
                disp = dispose & 7; // user override
            }
            disp <<= 2;
            // packed fields
            out.write(0 | // 1:3 reserved
                    disp | // 4:6 disposal
                    0 | // 7   user input - 0 = none
                    transp); // 8   transparency flag
            writeShort(delay); // delay x 1/100 sec
            out.write(transIndex); // transparent color index
            out.write(0); // block terminator
        }
        /**
         * Writes Image Descriptor
         */
        protected void writeImageDesc() throws IOException {
            out.write(0x2c); // image separator
            writeShort(0); // image position x,y = 0,0
            writeShort(0);
            writeShort(width); // image size
            writeShort(height);
            // packed fields
            if (firstFrame) {
                // no LCT  - GCT is used for first (or only) frame
                out.write(0);
            } else {
                // specify normal LCT
                out.write(0x80 | // 1 local color table  1=yes
                        0 | // 2 interlace - 0=no
                        0 | // 3 sorted - 0=no
                        0 | // 4-5 reserved
                        palSize); // 6-8 size of color table
            }
        }
        /**
         * Writes Logical Screen Descriptor
         */
        protected void writeLSD() throws IOException {
            // logical screen size
            writeShort(width);
            writeShort(height);
            // packed fields
            out.write((0x80 | // 1   : global color table flag = 1 (gct used)
                    0x70 | // 2-4 : color resolution = 7
                    0x00 | // 5   : gct sort flag = 0
                    palSize)); // 6-8 : gct size
            out.write(0); // background color index
            out.write(0); // pixel aspect ratio - assume 1:1
        }
        /**
         * Writes Netscape application extension to define
         * repeat count.
         */
        protected void writeNetscapeExt() throws IOException {
            out.write(0x21); // extension introducer
            out.write(0xff); // app extension label
            out.write(11); // block size
            writeString("NETSCAPE" + "2.0"); // app id + auth code
            out.write(3); // sub-block size
            out.write(1); // loop sub-block id
            writeShort(repeat); // loop count (extra iterations, 0=repeat forever)
            out.write(0); // block terminator
        }
        /**
         * Writes color table
         */
        protected void writePalette() throws IOException {
            out.write(colorTab, 0, colorTab.length);
            int n = (3 * 256) - colorTab.length;
            for (int i = 0; i < n; i++) {
                out.write(0);
            }
        }
        /**
         * Encodes and writes pixel data
         */
        protected void writePixels() throws IOException {
            LZWEncoder encoder =
                    new LZWEncoder(width, height, indexedPixels, colorDepth);
            encoder.encode(out);
        }
        /**
         *    Write 16-bit value to output stream, LSB first
         */
        protected void writeShort(int value) throws IOException {
            out.write(value & 0xff);
            out.write((value >> 8) & 0xff);
        }
        /**
         * Writes string to output stream
         */
        protected void writeString(String s) throws IOException {
            for (int i = 0; i < s.length(); i++) {
                out.write((byte) s.charAt(i));
            }
        }
    }

本文转自:http://www.yeetrack.com/?p=943

时间: 2024-10-23 19:13:11

Java生成动态GIF图片的相关文章

java生成随机验证图片的实现

package com.fxr.生成随机图片; import java.awt.Color; import java.awt.Font; import java.awt.Graphics; import java.awt.image.BufferedImage; import java.io.File; import java.io.IOException; import java.util.Random; import javax.imageio.ImageIO; public class M

java生成简单验证码图片

概要 最近项目需要用java实现输出随机验证码图片到前台,正好有机会接触下java的绘图类,完成需求后也有时间做个总结,写篇随笔记录下也希望能帮助到有同样需求的人! 需求流程图 1.生成随机数 在java中生成随机数无非就是调用Random的api,但为了后续更好的实用,应该分成多种组合以适应需求的变化,应将生成随机数的个数和类型组合还有排除字符抽取成参数,这个也比较简单,没有什么难度,就直接贴上代码 1 /** 2 * 生成随机验证码 3 * @param type 类型 4 * @param

java随机动态生成汉字验证码图片的实例代码分享

原创不易,转载请注明出处:java随机动态生成汉字验证码图片的实例代码分享 代码下载地址:http://www.zuidaima.com/share/1809721113234432.htm 汉字验证码实现原理 将汉字和干扰线生成图片并将汉字保存到session,前台获取每次生成验证码图片并用文本框值和session值比较,功能相对来说还是比较简单的. 效果图,如下: 验证成功后: java随机动态生成汉字验证码图片的实例代码分享

Java中动态生成当前日期的文件

1.Java中动态生成当前日期的文件名称并且将控制台的输出信息输入到文件中     public static void SaveClonseToFile() throws IOException, FileNotFoundException {         File f = new File(getCurrentDateFileName() + ".txt");         f.createNewFile();         FileOutputStream fileOut

java生成验证码图片

public class AuthImg extends HttpServlet { /** * */ private static final long serialVersionUID = 4975974534946437434L; // 设置图形验证码字符串的字体和大小 private Font mFont = new Font("微软雅黑", Font.ITALIC, 18); private Random random = new Random(); public void

Java Web:使用Servlet生成网页随机图片验证码

最近在学习Java Web开发,做了一个生成网页随机图片验证码的例子,在此记录. 一.新建Servlet项目: 在MyEclipse中新建Servlet项目,一步步操作就OK,在此不再赘述.建好之后文件目录树如下图: 二.源代码实现: (1)java代码: package com.zdt.identity; import java.awt.Color; import java.awt.Font; import java.awt.Graphics2D; import java.awt.image.

java实现动态上传多个文件并解决文件重名问题(转)

本文分为两大方面进行讲解: 一.java实现动态上传多个文件 二.解决文件重命名问题java 供大家参考,具体内容如下 1.动态上传多个文件 <script> <form name="xx" action="<c:url value='/Up3Servlet'/>" method="post" enctype="multipart/form-data">   <table id=&qu

java生成word的几种方案

http://blog.sina.com.cn/s/blog_a5e968370101crtl.html 1. Jacob是Java-COM Bridge的缩写,它在Java与微软的COM组件之间构建一座桥梁.使用Jacob自带的DLL动态链接库,并通过JNI的方式实现了在Java平台上对COM程序的调用.DLL动态链接库的生成需要windows平台的支持. 2. Apache POI包括一系列的API,它们可以操作基于MicroSoft OLE 2 Compound Document Form

怎样用Java自制优秀的图片验证码?这样!

Completely Automated Public Turing test to tell Computers and Humans Apart 全自动区分计算机和人类的图灵测试 简称CAPTCHA,这就是验证码的含义.它可以防止恶意破解密码.刷票.论坛灌水,有效防止某个黑客对某一个特定注册用户用特定程序暴力破解方式进行不断的登陆尝试等. 虽然网上有一些很不错的验证码开源插件如kaptcha等,但是如果自己能够熟悉原理并且自己动手写,那岂不是一件很酷的事情么?今天给大家分享的这个教程是基于J