【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集

Description

  求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m。n, m<=1e5。

Solution

  f(n)为gcd正好是n的(x,y)的个数

  F(n)为gcd是n的倍数的(x,y)的个数

  我们要求的就是f(i)

  然而这个不好直接算,可F(i)可以直接用(n/i)*(m/i)得到

  那么有F(n)=sigma n|i f(i)

  于是有f(n)=sigma n|i mu(i)*F(i)

  这就是莫比乌斯反演,不过这道题直接用容斥的思想想也很容易得到上面那个式子

  那么考虑每一个gcd的贡献

  把n和m除以gcd后,就相当于要求n次f(1)

  每次均摊logn

Code

  也有不用反演的做法,大概是从后往前算,每一步都严格定义,用容斥做。

  这道题是我做的BZOJ第三题,不过当时只会80/90暴力然后去看的题解的容斥,那时候觉得把每一个gcd分开考虑贡献真是神奇,不过对于现在是再自然不过的想法了。

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<cstring>
 4 #define ll long long
 5 using namespace std;
 6 const int maxn=1e5+5;
 7
 8 int flag[maxn],prime[maxn],cnt;
 9 int mu[maxn];
10 int N,M;
11
12 int getmu(){
13     mu[1]=1;
14     for(int i=2;i<=N;i++){
15         if(!flag[i]){
16             mu[i]=-1;
17             prime[++cnt]=i;
18         }
19         for(int j=1;i*prime[j]<=N&&j<=cnt;j++){
20             flag[i*prime[j]]=1;
21             if(i%prime[j]==0){
22                 mu[i*prime[j]]=0;
23                 break;
24             }
25             mu[i*prime[j]]=-mu[i];
26         }
27     }
28 }
29
30 ll work(int x){
31     ll ret=0;
32     int n=N/x,m=M/x;
33     for(int i=1;i<=n;i++)
34         ret+=1ll*mu[i]*(n/i)*(m/i);
35     return ret;
36 }
37
38 int main(){
39     scanf("%d%d",&N,&M);
40     if(N>M) swap(N,M);
41     getmu();
42
43     ll ans=0;
44     for(int i=1;i<=N;i++)
45         ans+=work(i)*(2*i-1);
46     printf("%lld\n",ans);
47     return 0;
48 }
时间: 2024-12-27 07:35:48

【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集的相关文章

BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点的个数是gcd(x,y) 2,新学了一发求gcd(x,y)=k有多少对的姿势,已知0<x<=n,0<y<=m 令x=min(n,m),令f[i]代表gcd(x,y)=i的对数, 那么通过O(xlogx)的复杂度就可以得到f[1]到f[n](反着循环) 普通的容斥(即莫比乌斯反演)其实也

【莫比乌斯反演】【线性筛】bzoj2005 [Noi2010]能量采集

http://blog.csdn.net/Clove_unique/article/details/51089272 Key:1.连接平面上某个整点(a,b)到原点的线段上有gcd(a,b)个整点. 2.欧拉函数的性质之一:若(N%a==0 && (N/a)%a==0) 则有:phi(N)=phi(N/a)*a.由此可以线性筛. 3.一个数的所有因子的phi值之和恰好等于这个数本身. #include<cstdio> #include<algorithm> usin

bzoj2005: [Noi2010]能量采集

[题意] 一块n*m大小的田,人站在(0,0)位置.对于每个(i,j)位置的植物,从(0,0)到(i,j)的连线中有k棵植物,能量损失就为2*k-1(包括端点上的植物).求所有植物的能量损失. n,m<=10^5 [题解] 实际上对于每棵植物k就是x坐标,y坐标的公约数,不过n*m棵植物显然不能一个个公约数求过来. 仔细想一下最大公约数d<=min(n,m),所以我们考虑枚举d并计算一下最大公约数为d的数对个数,这个值就设为f(d)好了. 首先直接(n/d)*(m/d)计算出来的只是公约数包含

【BZOJ2005】[Noi2010]能量采集 欧拉函数

[BZOJ2005][Noi2010]能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,

bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列 有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范

BZOJ 2005 [Noi2010]能量采集 (容斥)

[Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB Submit: 2324  Solved: 1387 [Submit][Status][Discuss] Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以

[NOI2010]能量采集

469. [NOI2010]能量采集 ★★☆   输入文件:energy2010.in   输出文件:energy2010.out   简单对比时间限制:1 s   内存限制:512 MB [问题描述] 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x

BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= n, 1 <= y <= m ) 的数对(x, y)个数. 这个不好求, 考虑容斥, 设f(i) 为含有公因数 i 的数对(x, y)(1 <= x <= n, 1 <= y <= m)个数 , 显然f(i) = (n / i) * (m / i). 则 g(i) = f

2005: [Noi2010]能量采集

2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 1831  Solved: 1086[Submit][Status] Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标