Ultra-QuickSort
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 55048 | Accepted: 20256 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0题意:就是求逆序数分析:有几种方法,这里用了两个
#include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> using namespace std; const int MAXN = 500010; int F[MAXN]; int a[MAXN]; int n; pair<int,int>p[MAXN]; void update(int x,int val) { while(x<=n) { F[x]+=val; x+=x&-x; } } int query(int x) { int res=0; while(x>0) { res+=F[x]; x-=x&-x; } return res; } int main() { while(scanf("%d",&n)==1&&n) { memset(F,0,sizeof(F)); memset(a,0,sizeof(a)); for(int i=1;i<=n;i++) { scanf("%d",&p[i].first); p[i].second=i; } sort(p+1,p+n+1); a[p[1].second]=1; for(int i=2;i<=n;i++) { if(p[i].first!=p[i-1].first) a[p[i].second]=i; else a[p[i].second]=a[p[i-1].second]; } long long ans=0; for(int i=1;i<=n;i++) { update(a[i],1); ans+=query(n)-query(a[i]); } printf("%lld\n",ans); } return 0; }
/* 用归并排序求逆序数 */ #include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> using namespace std; const int MAXN = 500010; int a[MAXN],b[MAXN],c[MAXN]; long long ans; //将已经排好的l-mid,mid+1-r进行归并 void merge(int *a,int l,int mid,int r) { for(int i=0,j=l;j<=mid;j++) b[i++]=a[j]; int len1=mid-l+1; for(int i=0,j=mid+1;j<=r;j++) c[i++]=a[j]; int len2=r-mid; int i=0,j=0,k=l; while(i<len1&&j<len2&&k<=r) { if(b[i]<=c[j]) a[k++]=b[i++]; else { a[k++]=c[j++]; ans+=len1-i;//逆序数就是累加后面比自己小的数的个数 //此时b[i]>c[j],那么c[j]会给b[i]后面的len1-i个数造成逆序数 } } while(i<len1) a[k++]=b[i++]; while(j<len2) a[k++]=c[j++]; } void merge_sort(int *a,int l,int r) { if(l<r) { int mid=(l+r)/2; merge_sort(a,l,mid); merge_sort(a,mid+1,r); merge(a,l,mid,r); } } int main() { int n; while(scanf("%d",&n)==1&&n) { for(int i=1;i<=n;i++) scanf("%d",&a[i]); ans=0; merge_sort(a,1,n); printf("%lld\n",ans); } return 0; }