Question:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
找路径个数,元素为1,则为障碍,只能右移,下移
Algorithm:
类似Unique Paths,还是用动态规划,与之不同的是,如果有障碍,当前元素置0,还有左下角和右下角为0时,没有路径。
Accepted Code:
class Solution { public: int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) { int M=obstacleGrid.size(); int N=obstacleGrid[0].size(); //左上角和右下角为1,则返回0 if(obstacleGrid.size()==0||obstacleGrid[0].size()==0||obstacleGrid[0][0]==1||obstacleGrid[M-1][N-1]==1) return 0; vector<vector<int>> res(M,vector<int>(N,1)); for(int i=1;i<M;i++) { for(int j=1;j<N;j++) { if(obstacleGrid[i][j]==1) res[i][j]=0; else { if(obstacleGrid[i-1][j]==0&&obstacleGrid[i][j-1]==0) res[i][j]=res[i-1][j]+res[i][j-1]; else if(obstacleGrid[i-1][j]==1&&obstacleGrid[i][j-1]==0) res[i][j]=res[i][j-1]; else if(obstacleGrid[i-1][j]==0&&obstacleGrid[i][j-1]==1) res[i][j]=res[i-1][j]; else res[i][j]=0; } } } return res[M-1][N-1]; } };
时间: 2024-10-10 06:17:01