bzoj4197 [Noi2015]寿司晚宴

Description

为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴。小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴。

在晚宴上,主办方为大家提供了 n?1 种不同的寿司,编号 1,2,3,…,n?1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n)。

现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y 的寿司,而 x 与 y 不互质。

现在小 G 和小 W 希望统计一共有多少种和谐的品尝寿司的方案(对给定的正整数 p 取模)。注意一个人可以不吃任何寿司。

Input

输入文件的第 1 行包含 2 个正整数 n,p,中间用单个空格隔开,表示共有 n 种寿司,最终和谐的方案数要对 p 取模。

Output

输出一行包含 1 个整数,表示所求的方案模 p 的结果。

Sample Input

3 10000

Sample Output

9

HINT

2≤n≤500

0<p≤1000000000

正解:状压dp。

这题我一开始yy了一个三进制dp,结果直接被样例三封杀了。。

因为<=sqrt(500)的质数只有8个,所以我们可以考虑状态压缩。然而。。对于每个数,除去这些质数以后还会剩一个大质数。。那么我们考虑一些奇怪的思路。。

设f[i][j]表示第一个人在8个质数中取i集合,第二个人取j集合的方案数,g[0][i][j]表示表示对于当前大于根号500的质因子,这个质因子分配给第一个人(或者不分配)的方案数,g[1][i][j]表示第二个人。那么我们在一开始,把f数组复制给g[0]和g[1],然后直接转移就好,当然i和j集合不能冲突,这个需要加特判。最后求f数组时就是f[i][j]=g[0][i][j]+g[1][i][j]-f[i][j],因为根据设的状态,可以知道不取当前质因子的状态算了两次,所以要减去一次。

//It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define inf (1<<30)
#define ky (1<<8)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)

using namespace std;

struct node{ ll s,pi; }a[510];

const ll pi[8]={2,3,5,7,11,13,17,19};
ll f[ky+1][ky+1],g[2][ky+1][ky+1],n,p,ans;

il ll gi(){
    RG ll x=0,q=1; RG char ch=getchar(); while ((ch<‘0‘ || ch>‘9‘) && ch!=‘-‘) ch=getchar();
    if (ch==‘-‘) q=-1,ch=getchar(); while (ch>=‘0‘ && ch<=‘9‘) x=x*10+ch-48,ch=getchar(); return q*x;
}

il ll cmp(const node &a,const node &b){ return a.pi<b.pi; }

il void work(){
    n=gi(),p=gi(); RG ll x;
    for (RG ll i=2;i<=n;++i){
    x=i;
    for (RG ll j=0;j<8;++j)
        while (x%pi[j]==0) a[i].s|=1<<j,x/=pi[j];
    a[i].pi=x;
    }
    f[0][0]=1; sort(a+2,a+n+1,cmp);
    for (RG ll i=2;i<=n;++i){
    if (i==2 || a[i].pi!=a[i-1].pi || a[i].pi==1)
        memcpy(g[0],f,sizeof(f)),memcpy(g[1],f,sizeof(f));
    for (RG ll j=ky-1;j>=0;--j)
        for (RG ll k=ky-1;k>=0;--k){
        if (j&k) continue;
        if (!(a[i].s&k)) (g[0][j|a[i].s][k]+=g[0][j][k])%=p;
        if (!(a[i].s&j)) (g[1][j][k|a[i].s]+=g[1][j][k])%=p;
        }
    if (i==n || a[i].pi!=a[i+1].pi || a[i].pi==1)
        for (RG ll j=ky-1;j>=0;--j)
        for (RG ll k=ky-1;k>=0;--k){
            if (j&k) continue;
            f[j][k]=(g[0][j][k]+g[1][j][k]-f[j][k]+p)%p;
        }
    }
    for (RG ll j=ky-1;j>=0;--j)
    for (RG ll k=ky-1;k>=0;--k){ if (j&k) continue; (ans+=f[j][k])%=p; }
    printf("%lld\n",ans); return;
}

int main(){
    File("sushi");
    work();
    return 0;
}
时间: 2024-12-25 06:34:17

bzoj4197 [Noi2015]寿司晚宴的相关文章

[UOJ#129][BZOJ4197][Noi2015]寿司晚宴

试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n?1 种不同的寿司,编号 1,2,3,-,n?1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n). 现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y 的寿司,而

【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n). 现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x

BZOJ 4197: [Noi2015]寿司晚宴( dp )

N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个人即可. 时间复杂度O(N*2^16) ----------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm&

状压DP --- [NOI2015]寿司晚宴

[NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n?1种不同的寿司,编号1,2,3,?,n-1,其中第种寿司的美味度为i+1(即寿司的美味度为从2到n). 现在小G和小W希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当: 小G品尝的寿司种类中存在一种美味度为x的寿司,小W品尝的寿司中存在一种美味度为y的寿司,而x与y不互质. 现在小G和小W希

[NOI2015]寿司晚宴

题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴.小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n?1种不同的寿司,编号1,2,3,?,n-1,其中第种寿司的美味度为i+1(即寿司的美味度为从2到n). 现在小G和小W希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小G品尝的寿司种类中存在一种美味度为x的寿司,小W品尝的寿司中存在一种美味度为y的寿司,而x与y不互质. 现在小G和小W希望统计一共有多少种和谐的品尝寿司

[BZOJ]4197: [Noi2015]寿司晚宴

Time Limit: 10 Sec  Memory Limit: 512 MB Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n?1 种不同的寿司,编号 1,2,3,-,n?1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n). 现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝

【bzoj4197】[Noi2015]寿司晚宴 dp

因为每个数只有一个大于根号n的质因子,所以我们把每个数拆成一个大于根号n的质因子乘以一个数的形式,对于大于根号n的质因子相同的数,我们放到一起处理 dp[0/1][i][x][y]表示A/B选了当前的大质数,现在枚举到具有当前大质数的第i个数,之前A选中的集合为x,B选中的集合为y的方案数 dp[0/1][0][x][y]=f[i-1][x][y] dp[0][i][x][y]=dp[0][i-1][x][y]+dp[0][i-1][x-S][y] dp[1][i][x][y]=dp[1][i-

【题解】NOI2015寿司晚宴

想好久啊+不敢写啊--但果然人还是应当勇敢自信,只有坚定地去尝试,才会知道最后的结果.1A真的太开心啦,不过好像我的做法还是比较复杂的样子--理解起来应该算是比较容易好懂的类型,大家可以参考一下思路~ 首先我们先考虑一下简单的30分算法:30以内的质数只有十个左右,可以利用状压表示出两个人所选择的集合,再通过寿司转移即可.之后的大数据呢?我们发现不能这样做是因为之后的质数越来越多,状压的空间就开不下了. 这时要注意到一个性质:对于1~n内的每一个数而言,都可以分解成若干个<sqrt(n)的质数之

bzoj 4197: [Noi2015]寿司晚宴【状压dp】

一个数内可能多个的质因数只有小于根号n的,500内这样的数只有8个,所以考虑状压 把2~n的数处理出小于根号500的质因数集压成s,以及大质数p(没有就是1),然后按p排序 根据题目要求,拥有一个质因数的只能给一个人,所以排序后能给一个人的大质数就是一个区间 然后设f[s1][s2]为一人选s1,另一人选s2的方案数,注意这里的s只压了小于根号500的八个质数 设g[0/1][s1][s2]为一人选s1,另一人选s2的,当前枚举的大质数给小G/小W的方案数 正常转移即可 然后注意把g转到f上时应