稀疏贝叶斯

上了一节陈欢欢老师的《信号与信息处理》,有一种“听君一席话,胜读十年书”的感觉,想尽量对于贝叶斯理解的更深刻一些,特地对课上的内容做以下总结。

贝叶斯定理的基本含义:

贝叶斯定理是由条件概率公式推导出来的,我们都知道条件概率公式为:

$P(AB)=P(A|B)P(B)$
时间: 2024-11-11 22:12:46

稀疏贝叶斯的相关文章

贝叶斯方法

学习资料:http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/ 概率论只不过是把常识用数学公式表达了出来. ——拉普拉斯 记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时:有一次,在书店看到一本书,名叫贝叶斯方法.当时数学系的课程还没有学到概率统计.我心想,一个方法能够专门写出一本书来,肯定很牛逼.后来,我发现当初的那个朴素归纳推理成立了——这果然是个牛逼的方法. ——题记 目录 0. 前言 1. 历史  

【机器学习实验】使用朴素贝叶斯进行文本的分类

引言 朴素贝叶斯由贝叶斯定理延伸而来的简单而强大的概率模型,它根据每个特征的概率确定一个对象属于某一类别的概率.该方法基于一个假设,所有特征需要相互独立,即任一特征的值和其他特征的值没有关联关系. 虽然这种条件独立的假设在许多应用领域未必能很好满足,甚至是不成立的.但这种简化的贝叶斯分类器在许多实际应用中还是得到了较好的分类精度.训练模型的过程可以看作是对相关条件概率的计算,它可以用统计对应某一类别的特征的频率来估计. 朴素贝叶斯最成功的一个应用是自然语言处理领域,自然语言处理的的数据可以看做是

数学之美番外篇:平凡而又神奇的贝叶斯方法

转载自:http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/ 概率论只不过是把常识用数学公式表达了出来. ——拉普拉斯 记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时:有一次,在书店看到一本书,名叫贝叶斯方法.当时数学系的课程还没有学到概率统计.我心想,一个方法能够专门写出一本书来,肯定很牛逼.后来,我发现当初的那个朴素归纳推理成立了——这果然是个牛逼的方法. ——题记 目录 0. 前言 1. 历史   

NLP系列(5)_从朴素贝叶斯到N-gram语言模型

作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处:http://blog.csdn.net/longxinchen_ml/article/details/50646528 http://blog.csdn.net/han_xiaoyang/article/details/50646667 声明:版权所有,转载请联系作者并注明出处 1. 引言:朴素贝叶斯的局限性 我们在之前文章<NLP系列(2)_用朴素贝叶斯进行文本分类(上)>探讨过,朴素贝叶斯的局限性来源于其条件独立

贝叶斯网络

贝叶斯网络定了这样一个独立的结构:一个节点的概率仅依赖于它的父节点.贝叶斯网络更加适用于稀疏模型,即大部分节点之间不存在任何直接的依赖关系. 联合概率,即所有节点的概率,将所有条件概率相乘: 我们最终的目标是计算准确的边缘概率,比如计算Hangover的概率.在数学上,边缘概率被定义为各种状态下系统所有其他节点对本节点影响的概率的和. 边缘概率 优化 接下来就是要获得观测变量 xh  的估计,需要使 p(xh)的值最大, 即: 如果贝叶斯网络比较小,我们可以很简单的做边缘求和运算,但是如果问题规

【转载】数学之美番外篇:平凡而又神奇的贝叶斯方法

数学之美番外篇:平凡而又神奇的贝叶斯方法 BY 刘未鹏 – SEPTEMBER 21, 2008POSTED IN: 数学, 机器学习与人工智能, 计算机科学 概率论只不过是把常识用数学公式表达了出来. ——拉普拉斯 记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时:有一次,在书店看到一本书,名叫贝叶斯方法.当时数学系的课程还没有学到概率统计.我心想,一个方法能够专门写出一本书来,肯定很牛逼.后来,我发现当初的那个朴素归纳推理成立了——这果然是个牛逼的方法. ——题记 目

scikit-learn 朴素贝叶斯类库使用小结

之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结.这里我们就从实战的角度来看朴素贝叶斯类库.重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择. 1. scikit-learn 朴素贝叶斯类库概述 朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单.相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握.在scikit-learn中,一共有3个朴素贝叶斯的分类算法类.分别是Gau

平凡而又神奇的贝叶斯方法

转自 http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/ 数学之美番外篇:平凡而又神奇的贝叶斯方法 概率论只不过是把常识用数学公式表达了出来. --拉普拉斯 记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时:有一次,在书店看到一本书,名叫贝叶斯方法.当时数学系的课程还没有学到概率统计.我心想,一个方法能够专门写出一本书来,肯定很牛逼.后来,我发现当初的那个朴素归纳推理成立了--这果然是个牛逼的方法. --

平凡而又神奇的的贝叶斯方法

平凡而又神奇的贝叶斯方法 概率论只不过是把常识用数学公式表达了出来.    —拉普拉斯 目录 0. 前言  1. 历史      1.1 一个例子:自然语言的二义性      1.2 贝叶斯公式  2. 拼写纠正  3. 模型比较与贝叶斯奥卡姆剃刀      3.1 再访拼写纠正      3.2 模型比较理论(Model Comparasion)与贝叶斯奥卡姆剃刀(Bayesian Occam’s Razor)      3.3 最小描述长度原则      3.4 最优贝叶斯推理  4. 无处