Deep Learning 学习总结(一)—— Caffe Ubuntu14.04 CUDA 6.5 配置

Caffe (Convolution Architecture For Feature Extraction)作为深度学习CNN一个非常火的框架,对于初学者来说,搭建Linux下的Caffe平台是学习深度学习关键的一步,其过程也比较繁琐,回想起当初折腾的那几天,遂总结一下Ubuntu14.04的配置过程,方便以后新手能在此少走弯路。

1. 安装build-essentials

安装开发所需要的一些基本包

sudo apt-get install build-essential

2. 安装NVIDIA驱动

输入下列命令添加驱动源

sudo add-apt-repository ppa:xorg-edgers/ppa
sudo apt-get update

安装340版本驱动(具体版本取决于电脑显卡的型号,详细可到NVIDIA官网查看)

sudo apt-get install nvidia-340

安装完成后,继续安装下列包

sudo apt-get install nvidia-340-uvm

安装驱动完毕,reboot.

3. 安装CUDA 6.5

CUDA的Deb包安装较为简单,按照官网流程,事先安装必要的库

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

3.1 安装CUDA

然后通过以下命令获取Ubuntu 14.04 CUDA相关的repository package

$ sudo dpkg -i cuda-repo-ubuntu1404_6.5-14_amd64.deb
$ sudo apt-get update

然后开始安装CUDA Toolkit

$ sudo apt-get install cuda

此时需要下载较长时间,网速较慢的中途可以出去吃个饭~

3.2 环境配置

CUDA安装完毕后,需要对.bashrc加入一下命令来配置环境

export CUDA_HOME=/usr/local/cuda-6.5
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64 

PATH=${CUDA_HOME}/bin:${PATH}
export PATH

3.3 安装CUDA SAMPLE

通过复制SDK samples 到主目录下,完成整个编译过程

$ cuda-install-samples-6.5.sh  ~
$ cd ~/NVIDIA_CUDA-6.5_Samples
$ make

如果以上过程都成功后,可以通过运行bin/x86_64/linux/release 下的deviceQuery来验证一下。如果出现以下信息,则说明驱动以及显卡安装成功

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 670"
  CUDA Driver Version / Runtime Version          6.5 / 6.5
  CUDA Capability Major/Minor version number:    3.0
  Total amount of global memory:                 4095 MBytes (4294246400 bytes)
  ( 7) Multiprocessors, (192) CUDA Cores/MP:     1344 CUDA Cores
  GPU Clock rate:                                1098 MHz (1.10 GHz)
  Memory Clock rate:                             3105 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 524288 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Bus ID / PCI location ID:           1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = GeForce GTX 670
Result = PASS

4. 安装BLAS

Caffe的BLAS可以有三种选择,分别为atlas、mkl以及openBLAS。对于mkl可以到intel官网下载,解压完成后又一个install_GUI.sh文件,执行该文件会出现图形安装界面,根据说明一步一步执行即可。

也可对openBLAS源码进行编译,不过需要gcc以及gfortran等相关编译器。个人认为比较便捷的是atlas,在Caffe官网上有相关的介绍,对于Ubuntu,通过以下命令可以下载atlas

sudo apt-get install libatlas-base-dev

5. 安装OpenCV

OpenCV库安装可以通过网上写好的脚本进行下载:https://github.com/jayrambhia/Install-OpenCV

解压文档后,进入Ubuntu/2.4 给所有的shell脚本加上可执行权限

chmod +x *.sh

然后执行 opencv2_4_9.sh 安装最新版本,注意,OpenCV 2.4.9不支持gcc-4.9以上的编译器!!

6. 安装其他dependencies

对于Ubuntu 14.04,执行以下命令下载其他相关依赖库文件

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler

7. 安装python以及Matlab

首先安装pip和python –dev

sudo apt-get install python-dev python-pip

以及caffe python wrapper所需要的额外包

sudo pip install -r /path/to/caffe/python/requirements.txt

Matlab接口需要额外安装Matlab程序

Last shot --- 编译Caffe

完成所有的环境配置,终于可以编译caffe了,通过官网下载caffe源码,进入根目录caffe-master,首先复制一份makefile

cp Makefile.config.example Makefile.config

然后修改里面的内容,主要有:

CPU_ONLY   是否采用cpu模式,否则选择CUDNN(这里的CUDNN需要在NVIDIA-CUDNN下载,还有通过email注册申请才能通过审核)

BLAS:=atlas(也可以是open或者mkl)

DEBUG  如果需要debug模式

MATLAB_DIR 如果需要采用matlab 接口

完成配置后,可以进行编译了

make all -j4
make test
make runtest

最后如果都能正常,证明caffe里面所有的例子程序都可以运行了,放心都跑CIFAR、MNIST以及ImageNet吧~~

时间: 2024-10-09 07:28:43

Deep Learning 学习总结(一)—— Caffe Ubuntu14.04 CUDA 6.5 配置的相关文章

Caffe Ubuntu14.04 + CUDA 8 (支持GTX1080 1070等Pascal架构显卡)

1. 前言 本教程使用的系统是Ubuntu 14.04 LTS 64-bit,使用的CUDA版本为8. 理论上本教程支持Pascal架构显卡,如游戏卡GeForce GTX1070,GTX 1080,新Titan X:以及刚刚推出的计算卡Tesla P100. 如果你在安装时使用计算卡进行GPU加速,而用于显示的显卡不是NVIDIA显卡,则可能导致因为安装NVIDIA驱动时自动加载X Server配置而无法启动图形界面.这时可以使用服务器版的Ubuntu,或者换用CentOS等. 2. 安装基础

【deep learning学习笔记】Recommending music on Spotify with deep learning

主要内容: Spotify是个类似酷我音乐的音乐网站,做个性化音乐推荐和音乐消费.作者利用deep learning结合协同过滤来做音乐推荐. 具体内容: 1. 协同过滤 基本原理:某两个用户听的歌曲都差不多,说明这两个用户听歌的兴趣.品味类似:某两个歌曲,被同一群人听,说明这两个歌曲风格类似. 缺点: (1)没有利用歌曲本身的特征(信息) (2)无法对"层级"的item进行处理,对于歌曲来说,这种层级关系体现在:专辑-主打歌-副歌,上面,这几种因素并不是同等重要的 (3)冷启动问题:

Deep Learning(深度学习)之(四)Deep Learning学习资源

十一.参考文献和Deep Learning学习资源 先是机器学习领域大牛的微博:@余凯_西二旗民工:@老师木:@梁斌penny:@张栋_机器学习:@邓侃:@大数据皮东:@djvu9-- (1)Deep Learning http://deeplearning.net/ (2)Deep Learning Methods for Vision http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/ (3)Neural Network for

ubuntu14.04下php环境配置过程

ubuntu14.04下php环境配置过程 这几天重装了下系统,需要重新配置PHP的开发环境,这里做下记录. 安装MySQL sudo apt-get install mysql-server mysql-client 安装过程中会要求输入数据库root账户的密码,输入密码即可.安装完成后,测试是否成功 mysql -u root -p 出现如下欢迎信息证明安装成功. 安装Apache服务器 sudo apt-get install apache2 安装完成,在浏览器里输入 http://loc

Ubuntu14.04服务器环境下配置方法如下:

这篇文章主要介绍了Ubuntu14.04服务器环境下配置PHP7.0+Apache2+Mysql5.7的方法,较为详细的分析了Ubuntu14.04操作系统环境下配置PHP7.0+Apache2+Mysql5.7的具体步骤与相关命令使用技巧,需要的朋友可以参考下 本文实例讲述了Ubuntu14.04服务器环境下配置PHP7.0+Apache2+Mysql5.7的方法.分享给大家供大家参考,具体如下: 这里为Ubuntu14.04系统下配置PHP7.0+Apache2+Mysql5.7,主要目的是

Caffe+Ubuntu14.04+CUDA7.5安装笔记

ubuntu 14.04安装 先到官网下载ubuntu14.04,网址:http://www.ubuntu.com/download/desktop ubuntu-14.04.4-desktop-amd64.iso 参考:Ubuntu14.04 安装及使用:[1]制作安装U盘 制作安装U盘 然后参考:Ubantu14.04安装教程 安装系统 分区: boot 设置 200M 主分区 / 设置 50000M swap 设置 4000M home 设置 剩余M cuda7.5安装 cuda7.5下载

Caffe+Ubuntu14.04+CUDA7.5 环境搭建(新人向)指南

序 本文针对想学习使用caffe框架的纯新手,如果文中有错误欢迎大家指出. 由于我在搭建这个环境的时候参考了许多网上的教程,但是没有截图,所以文中图片大多来源于网络. 本文没有安装matlab的步骤,因此需要安装并配置matlab的同学请百度matlab安装. 1. 在Win10环境下搭建Ubuntu14.04双系统 操作事先请准备好: 一个空的U盘,最好大于4G. 去Ubuntu官网下载一个Ubuntu14.04的iso镜像文件,注意要64位系统. 下载一些用的到的小工具,如EsayBCD,u

Neural Networks and Deep Learning学习笔记ch1 - 神经网络

近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的.从最主要的感知机開始讲起.到后来使用logistic函数作为激活函数的sigmoid neuron,和非常多其它如今深度学习中常使用的trick. 把深度学习的一个发展过程讲得非常清楚,并且还有非常多源代码和实验帮助理解.看完了整个tutorial后打算再又一次梳理一遍,来写点总结.以后再看其它资料

待续Oracle VM VirtualBox+ubuntu14.04+cuda+caffe

Oracle VM VirtualBox下载 ubuntu14.04 先安装virtualbox,再在上面装ubuntu14.04.注意要安装增强功能(启动虚拟机后,选择“Devices”菜单->选择“Insert Guest Additions CD Images”选项.如果没看见devices,按右crtl+c),否则屏幕显示不全. caffe的安装(暂时还没有安好,遇到的问题:安装完cuda之后重启,登录界面循环),参考的安装教程如下: 多版本安装教程 (注意要禁用Nouveau,安装cu