HDU - 1024 Max Sum Plus Plus(dp+滚动数组优化)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024

题意:给定n个数字,求其中m段的最大值(段与段之间不用连续,但是一段中要连续)

例如:2 5 1 -2 2 3 -1五个数字中选2个,选择1和2 3这两段。

题解:dp[i][j]从前j个数字中选择i段,然后根据第j个数字是否独立成一段,可以写出

状态转移方程:dp[i][j]=max(dp[i][j-1]+num[j],max(dp[i-1][k])+num[j])

这里的max(dp[i-1][k])代表的拥有i-1段时的最大值,然后再加上num[j]独立成的一段。

但是题目中没有给出m的取值范围,有可能爆内存和爆时,都需要处理一下。

对于防爆内存:注意到dp[i][*]只和dp[i][*],dp[i-1][*],即当前状态只和前一状态有关,可以用滚动数组优化(资料)。

对于防爆时:既然max(dp[i-1][k])代表的拥有i-1段时的最大值,我们可以用一个数组pre储存之前的最大值

状态转移方程:dp[i][j]=max(dp[i][j-1]+num[j],pre[j-1]+num[j])发现不关i什么事,于是乎

最后的状态转移方程:dp[j]=max(dp[j-1]+num[j],pre[j-1]+num[j])

 1 #include <iostream>
 2 #include <algorithm>
 3 using namespace std;
 4
 5 const int N=1000010;
 6 const int INF=0x3f3f3f3f;
 7 int num[N],pre[N],dp[N];
 8
 9 int main(){
10     int n,m;
11     while(scanf("%d %d",&m,&n)!=EOF){
12         for(int i=1;i<=n;i++) scanf("%d",&num[i]),dp[i]=0,pre[i]=0;
13
14         int MAX;
15         dp[0]=pre[0]=0;
16         for(int i=1;i<=m;i++){
17             MAX=-INF;
18             for(int j=i;j<=n;j++){//这里以i开始,因为最少要i个数字才能支撑i段
19                 dp[j]=max(dp[j-1]+num[j],pre[j-1]+num[j]);
20                 pre[j-1]=MAX;
21                 MAX=max(MAX,dp[j]);
22             }
23         }
24
25         printf("%d\n",MAX);
26     }
27     return 0;
28 }
时间: 2024-10-03 05:33:46

HDU - 1024 Max Sum Plus Plus(dp+滚动数组优化)的相关文章

HDU 1024 Max Sum Plus Plus --- dp+滚动数组

HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值,其中第i个子序列包括a[j], 则max(dp[m][k]),m<=k<=n 即为所求的结果 <2>初始状态: dp[i][0] = 0, dp[0][j] = 0; <3>状态转移: 决策:a[j]自己成为一个子段,还是接在前面一个子段的后面 方程: a[j]直接接在前面

HDU 1024 Max Sum Plus Plus (DP&#183;滚动数组)

题意  从n个数的数组中选出不相交的m段  求被选数的和的最大值 Max Sum 的升级版  不只是要选一段连续的了  而是选m段  思想还是类似  依旧dp 状态和状态转移方程不是很难想  在 Max Sum 这个问题中 dp[i] 表示的是以第i个数结尾的一段的 Max Sum  由于这里还有一个多少段的状态  于是这里令 dp[i][j] 表示在前 i 个数中选取 j 组  且第 i 个数在最后一组中的 Max Sum Plus Plus 那么现在对于第i个数有两种决策 1,  第 i 个

HDU 1024 Max Sum Plus Plus Dp题解

本题就是求m段子段,而且要求这些子段加起来和最大,最大子段和的Plus版本. 不过题意真的不好理解,x,y什么的都没有说清楚. 知道题意就开始解题了,这肯定是动态规划法了. 动态规划法的程序不难写,关键是抽象思维. 这里的最小情况是只分成一段的时候,就退化为最大子段和问题了,这个是段数的最小情况了: 如果只有0个数的时候,结果肯定为零了,或者如果只有一个数的时候就是这个数了,那么数列只有0个或者1个的时候就是数组的最小情况了. 然后记录使用一个数组记录dp[MAX_N],其中dp[i]的含义就是

Hdu 1024 Max Sum Plus Plus (dp)

题目链接: Hdu 1024 Max Sum Plus Plus 题目描述: 给出n个数,问m段连续子序列的和相加最大是多少? 解题思路: dp[i][j]表示把前i个元素(包括第i个),分成j段的最大和.状态转移方程就是dp[i][j] = max (dp[i-1][j] + arr[j],  max( dp[k][j-1]) + arr[j]),其中0<k<i.(第i个元素是保存在第j段,还是自己单独成段) 由于1<=n<=1000,000.n*n的数组肯定会爆炸,所以要对方程

hdu 1024 Max Sum Plus Plus(DP&amp;最大连续和加强版)

Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 16843    Accepted Submission(s): 5539 Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem

HDU 1024 Max Sum Plus Plus(二维数组转化为一维数组)

Problem Description: Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem. Given a consecutive number seq

hdu 1024 Max Sum Plus Plus(DP)

转移方程dp[i][j]=Max(dp[i][j-1]+a[j],max(dp[i-1][k] ) + a[j] ) 0<k<j 此链接中有详解点击打开链接 #include<stdio.h> #include<algorithm> #include<iostream> using namespace std; #define MAXN 1000000 #define INF 0x7fffffff int dp[MAXN+10]; int mmax[MAXN

[2016-03-28][HDU][1024][Max Sum Plus Plus]

时间:2016-03-28 17:45:33 星期一 题目编号:[2016-03-28][HDU][1024][Max Sum Plus Plus] 题目大意:从n个数字提取出一定数字组成m个部分,使得这个部分的总和最大 分析: dp[i][j]表示前i段计算第j个数字,dp[i][j] = max(dp[i - 1][j - 1] + a[j],dp[i][k] + a[j]); #include <algorithm> #include <cstring> #include &

HDU - 1024 Max Sum Plus Plus 滚动数组优化

给定n个数字,求其中m段的最大值(段与段之间不用连续,但是一段中要连续) 例如:2 5 1 -2 2 3 -1五个数字中选2个,选择1和2 3这两段. dp[i][j]从前j个数字中选择i段,然后根据第j个数字是否独立成一段,可以写出 状态转移方程:dp[i][j]=max(dp[i][j-1]+num[j],max(dp[i-1][k])+num[j]) 这里的max(dp[i-1][k])代表的拥有i-1段时的最大值,然后再加上num[j]独立成的一段. 但是题目中没有给出m的取值范围,有可