A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第6章课程讲义下载(PDF)

Summary

  • Gaussian elimination consists of two steps:

    • Forward Elimination of Unknowns
      In this step, the unknown is eliminated in each equation starting with the first equation. This way, the equations are reduced to one equation and one unknown in each equation.
    • Back Substitution
      In this step, starting from the last equation, each of the unknowns is found.
  • More about determinant
    • Let $[A]$ be a $n\times n$ matrix. Then if $[B]$ is a $n\times n$ matrix that results from adding or subtracting a multiple of one row (column) to another row (column), then $\det(A) = \det(B)$.
    • Let $[A]$ be a $n\times n$ matrix that is upper triangular, lower triangular or diagonal, then $$\det(A) = a_{11}\times a_{22}\times\cdots\times a_{nn} = \prod_{i=1}^{n}a_{ii}$$ This implies that if we apply the forward elimination steps of Gaussian elimination method, the determinant of the matrix stays the same according to the previous result. Then since at the end of the forward elimination steps, the resulting matrix is upper triangular, the determinant will be given by the above result.

Selected Problems

1. Using Gaussian elimination to solve $$\begin{cases}4x_1+x_2-x_3=-2\\ 5x_1+x_2+2x_3=4\\ 6x_1+x_2+x_3=6\end{cases}$$

Solution:

Forward elimination: $$\begin{bmatrix}4& 1& -1& -2\\ 5& 1& 2& 4\\ 6& 1& 1& 6\end{bmatrix}\Rightarrow \begin{cases} R_2-{5\over4}R_1\\ R_3-{3\over2}R_1\end{cases}\begin{bmatrix}4& 1& -1& -2\\ 0& -{1\over4}& {13\over4}& {13\over2}\\ 0& -{1\over2}& {5\over2}& 9\end{bmatrix}$$ $$\Rightarrow R_3-2R_2\begin{bmatrix}4& 1& -1& -2\\ 0& -{1\over4}& {13\over4}& {13\over2}\\ 0& 0& -4& -4\end{bmatrix}$$ Back substitution: $$\begin{cases}-4x_3=-4\\ -{1\over4}x_2+{13\over4}x_3={13\over2}\\ 4x_1+x_2-x_3=-2\end{cases} \Rightarrow \begin{cases}x_3=1\\ -{1\over4}x_2+{13\over4}={13\over2}\\ 4x_1+x_2-1=-2\end{cases}$$ $$\Rightarrow \begin{cases}x_3=1\\ x_2 = -13\\ 4x_1-13=-1 \end{cases}\Rightarrow \begin{cases}x_1 = 3\\ x_2=-13\\ x_3=1 \end{cases}$$

2. Find the determinant of $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 1\end{bmatrix}$$

Solution:

Forward elimination $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 1\end{bmatrix}\Rightarrow\begin{cases}R_2 - {64\over25}R_1\\ R_3-{144\over25}R_1\end{cases} \begin{bmatrix}25& 5& 1\\ 0& -{24\over5}& -{39\over25}\\ 0& -{84\over5}& -{119\over25} \end{bmatrix}$$ $$\Rightarrow R_3-{7\over2}R_2 \begin{bmatrix}25& 5& 1\\ 0& -{24\over5}& -{39\over25}\\ 0& 0 & {7\over10} \end{bmatrix}$$ This is an upper triangular matrix and its determinant is the product of the diagonal elements $$\det(A) = 25\times(-{24\over5})\times{7\over10}=-84 $$

3. Find the determinant of $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$

Solution:

Forward elimination $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5 \end{bmatrix}\Rightarrow\begin{cases}R_2 + {3\over 10}R_1\\ R_3-{1\over2}R_1\end{cases} \begin{bmatrix}10& -7& 0\\ 0& -{1\over1000}& 6\\ 0& {5\over2}& 5 \end{bmatrix}$$ $$\Rightarrow R_3+2500R_2 \begin{bmatrix}10& -7& 0\\ 0& -{1\over1000}& 6\\ 0& 0 & 15005 \end{bmatrix}$$ This is an upper triangular matrix and its determinant is the product of the diagonal elements $$\det(A) = 10 \times(-{1\over1000})\times15005=-150.05$$

4. Using Gaussian elimination to solve $$\begin{cases}3x_1-x_2 - 5x_3 = 9\\ x_2-10x_3=0\\ -2x_1+x_2=-6\end{cases}$$

Solution:

Forward elimination: $$\begin{bmatrix}3& -1& -5& 9\\ 0& 1& -10& 0\\ -2& 1& 0& -6\end{bmatrix}\Rightarrow R_3+{2\over3}R_1 \begin{bmatrix}3& -1& -5& 9\\ 0& 1& -10& 0\\ 0& {1\over3}& -{10\over3}& 0\end{bmatrix}$$ $$\Rightarrow R_3-{1\over3}R_2 \begin{bmatrix}3& -1& -5& 9\\ 0& 1& -10& 0\\ 0& 0 & 0 & 0\end{bmatrix}$$ Back substitution: $$\begin{cases}x_2-10x_3=0\\ 3x_1-x_2-5x_3=9\end{cases} \Rightarrow \begin{cases}x_2 = 10x_3\\ 3x_1-15x_3 = 9\end{cases} \Rightarrow \begin{cases}x_1 = 5x_3+3\\ x_2 = 10x_3\end{cases}$$ where $x_3$ is arbitrary.

时间: 2024-12-16 04:30:28

A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination的相关文章

A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔记下载(Academia.edu) 第8章课程讲义下载(PDF) Summary Algorithm Given a general set of $n$ equations and $n$ unknowns $$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots

A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔记下载(Academia.edu) 第7章课程讲义下载(PDF) Summary For a nonsingular matrix $[A]$ on which one can always write it as $$[A] = [L][U]$$ where $[L]$ is a lower tr

A.Kaw矩阵代数初步学习笔记 5. System of Equations

“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔记下载(Academia.edu) 第5章课程讲义下载(PDF) Summary Consistent and inconsistent system A system of equations $$[A][X]=[B]$$ where $[A]$ is called the coefficient

A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔记下载(Academia.edu) 第4章课程讲义下载(PDF) Summary Transpose Let $[A]$ be a $m\times n$ matrix. Then $[B]$ is the transpose of $[A]$ if $b_{ji} = a_{ij}$ for al

A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔记下载(Academia.edu) 第3章课程讲义下载(PDF) Summary Addition of matrices Two matrices $[A]$ and $[B]$ can be added only if they are the same size. The addition i

A.Kaw矩阵代数初步学习笔记:2. Vectors

“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔记下载(Academia.edu) 第2章课程讲义下载(PDF) Summary Vector A vector is a collection of numbers in a definite order. If it is a collection of $n$ numbers, it is c

A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔记下载(Academia.edu) 第9章课程讲义下载(PDF) Summary Ill-conditional system A system of equations is considered to be ill-conditioned if a small change in the coe

A.Kaw矩阵代数初步 学习笔记: 1. Introduction

“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. 第1章课程讲义下载(PDF) Summary Matrix A matrix is a rectangular array of elements. Matrix $A$ is denoted by $$A = \begin{bmatrix}a_{11} & \cdots & a_{1n}\\ \vdots&

Android属性动画初步学习笔记

近期学习Android属性动画和VetcorDrawable实现属性动画,以此记录一下学习笔记. 首先是属性动画,小白没截过动态图,方三张静态图吧       效果是点击红色图片,7个选项以属性动画的方式弹出并旋转,最后成一个1/4圆弧排列,再次点击则收回到红色原点下. 布局文件很简单,就是一个RelativeLayout下八个ImageView: 1 <?xml version="1.0" encoding="utf-8"?> 2 <Linear