sgu495:概率dp / 推公式

概率题。。可以dp也可以推公式

抽象出来的题目大意:

有 n个小球,有放回的取m次  问 被取出来过的小球的个数的期望

dp维护两个状态 第 i 次取出的是 没有被取出来过的小球的 概率dp[i] 和取出的是已经被取出来过的小球的概率np[i];

如果第 i-1 次取出的是已经被取出来过的小球 那么第 i 次取出没有取出来过小球的概率即为 dp[i-1];

反之则为 dp[i-1] - 1/n(没有取出来过的小球少了一个)

所以可以得到状态转移方程 dp[i]=dp[i-1]*(dp[i-1]-1/n)+np[i-1]*dp[i-1];

还可以推公式。。不过我还是觉得 推公式 得靠人品,能yy出来那当然是极好的。。。

代码:

#include <iostream>
#include <stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<math.h>
#include<ctype.h>
using namespace std;
#define MAXN 10000
int n,m;
double dp[100010];
double np[100010];
double solve()
{
    double res=0;
    memset(dp,0,sizeof(dp));
    memset(np,0,sizeof(np));
    dp[1]=1;
    np[1]=0;
    for(int i=2;i<=m;i++)
    {
        dp[i]=dp[i-1]*(dp[i-1]-1.0/(double)n)+np[i-1]*dp[i-1];
        np[i]=1-dp[i];
    }
    for(int i=1;i<=m;i++)
    {
        res+=dp[i];
    }
    return res;
}
int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        printf("%.10lf\n",solve());
    }
    return 0;
}

公式。。

#include <stdio.h>
#include<math.h>
double n,m;
int main()
{
    while(scanf("%lf%lf",&n,&m)!=EOF)
    {
        printf("%.10lf\n",n-n*pow(((n-1)/n),m));
    }
    return 0;
}
时间: 2024-10-24 17:18:17

sgu495:概率dp / 推公式的相关文章

POJ2096Collecting Bugs(数学期望,概率DP)

问题: Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stuff, he collects software bugs. When Ivan gets a new program, he classifies all possible bugs into n categories. Each day he discovers exactly one

SGU495 Kids and Prizes 概率DP,期望公式

题目 这题目首先进去以后,没地方提交,第一次做SGU的题目,只能在HUSTOJ上提交了 有n个盒子,里面有礼物的,m个人,每个人拿,拿过以后 把礼物取出来 把盒子放回去,求选中礼物数的期望 其实一开始就假设方程 dp[i]为 第i个人获得礼物的概率,但是状态转移方程不知道该怎么办,想了很久都没有办法, 其实首先边界为dp[1] = 1 第一个上来选的人肯定必中 接下来一个人的 则由两部分组成,dp[i] = (1 - dp[i - 1]) * dp[i - 1] + .........,因为上一

【BZOJ1426】收集邮票 概率DP 论文题 推公式题

链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网址:blog.csdn.net/vmurder/article/details/46468557"); } 题解: 并没有什么卵用,首先有一个神思路.然后神推公式.以下这篇博客写得非常详尽..另外题意是买第 i 次花 i 元,不是标号为 i 的邮票花 i 元. <strong">

Codeforces 235B Let&#39;s Play Osu! (概率dp求期望+公式变形)

B. Let's Play Osu! time limit per test:2 seconds memory limit per test:256 megabytes You're playing a game called Osu! Here's a simplified version of it. There are n clicks in a game. For each click there are two outcomes: correct or bad. Let us deno

HDU 4870 Rating(概率、期望、推公式) &amp;&amp; ZOJ 3415 Zhou Yu

其实zoj 3415不是应该叫Yu Zhou吗...碰到ZOJ 3415之后用了第二个参考网址的方法去求通项,然后这次碰到4870不会搞.参考了chanme的,然后重新把周瑜跟排名都反复推导(不是推倒)四五次才上来写这份有抄袭嫌疑的题解... 这2题很类似,多校的rating相当于强化版,不过原理都一样.好像是可以用高斯消元做,但我不会.默默推公式了. 公式推导参考http://www.cnblogs.com/chanme/p/3861766.html#2993306 http://www.cn

CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高位数字不为0. 因此,符合我们定义的最小的有趣的数是2013.除此以外,4位的有趣的数还有两个:2031和2301. 请计算恰好有n位的有趣的数的个数.由于答案可能非常大,只需要输出答案除以1000000007的余数. 输入格式 输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000). 输

[ACM] hdu 3853 LOOPS (概率DP,递推)

LOOPS Problem Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS. The planform of the

HDU 4599 Dice (概率DP+数学+快速幂)

题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n),这个用DP来推公式,d[i],表示抛 i 次连续的点数还要抛多少次才能完成.那么状态转移方程就是 d[i] = 1/6*(1+d[i+1]) + 5/6*(1+d[1]), 意思就是说在第 i 次抛和上次相同的概率是1/6,然后加上上次抛的和这一次,再加上和上次不同的,并且又得从第1次开始计算. 边界就是

ZOJ 3329 【概率DP】

题意: 给你三个均匀k面筛子. 分别有k1 k2 k3个面,每个面朝上的概率是相等的. 如果第一个筛子出现a第二个筛子出现b第三个筛子出现c那么置零. 否则在当前和加上三个点数之和. 求当前和大于n需要的步数的期望. 思路: 一开始状态转移搞错了,手推公式交了WA,后来想了想状态转移的过程发现每个状态都跟0状态有关系,但是dp[0]不确定,但是幸运的是这是一个线性变换,所以状态转移的时候记录一下dp[0]的系数,最后移项输出就好了. dp[i]=dp[i+x]*(k1*k2*k3);(x=i+j