Hive Compiler过程

  通过Parser将HiveQL转换成AST,通过Semantic Analyzer将AST转换为QB,通过Logical Plan Generator将QB转换成Operator Tree,通过Logical Optimizer对Operator Tree进行优化,通过Physical Plan Generator将Operator Tree转换为Tast Tree,最后通过Physical Optimizer对Task Tree进行优化

1、Parser:将HiveQL字符串转换为Parse Tree的形式

2、Semantic Analyzer:将Parse Tree转换为查询块QB,并填充元数据

3、Logical Plan Generator:转换成一系列的逻辑执行计划,也就是逻辑操作符构成的树 Operator Tree

4、Logical Optimizer:执行一些特定的优化算法并改写Operator Tree

5、Physical Plan Generator:将逻辑执行计划切分、改写成为物理执行计划(如M\R、Tez作业)

6、Physical Optimizer:优化物理执行计划,如Auto Map Join

如果,您认为阅读这篇博客让您有些收获,不妨点击一下右下角的【推荐】。

如果,您希望更容易地发现我的新博客,不妨点击一下左下角的【关注我】。

如果,您对我的博客所讲述的内容有兴趣,请继续关注我的后续博客,我是【刘超★ljc】。

本文版权归作者,禁止转载,否则保留追究法律责任的权利。

时间: 2024-10-12 10:39:01

Hive Compiler过程的相关文章

Hive学习之路 (二十)Hive 执行过程实例分析

一.Hive 执行过程概述 1.概述 (1) Hive 将 HQL 转换成一组操作符(Operator),比如 GroupByOperator, JoinOperator 等 (2)操作符 Operator 是 Hive 的最小处理单元 (3)每个操作符代表一个 HDFS 操作或者 MapReduce 作业 (4)Hive 通过 ExecMapper 和 ExecReducer 执行 MapReduce 程序,执行模式有本地模式和分 布式两种模式 2.Hive 操作符列表 3.Hive 编译器的

Hive SQL的编译过程

Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用.美团数据仓库也是基于Hive搭建,每天执行近万次的Hive ETL计算流程,负责每天数百GB的数据存储和分析.Hive的稳定性和性能对我们的数据分析非常关键. 在几次升级Hive的过程中,我们遇到了一些大大小小的问题.通过向社区的咨询和自己的努力,在解决这些问题的同时我们对Hive将SQL编译为MapReduce的过程有了比较深入的理解.对这一过程的理解不仅帮助我们解决了一些Hive的bug,也有利于我们优化Hive SQL

Hive SQL 编译过程

转自:http://www.open-open.com/lib/view/open1400644430159.html Hive跟Impala貌似都是公司或者研究所常用的系统,前者更稳定点,实现方式是MapReduce,因为用Hue的时候,在groupby中文的时候,出现了点问题,并且看到写很长的SQL语句,经常会看到起很多个Job,因此想了解下Hive怎么将SQL转化成MapReduce的Job.以后写SQL的时候,大概就了解怎么去做优化了.下面是看到的一片优秀的文章(美团的技术博客),我粘过

(转)Hive SQL的编译过程

本文来着美团 :http://tech.meituan.com/hive-sql-to-mapreduce.html Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用.美团数据仓库也是基于Hive搭建,每天执行近万次的Hive ETL计算流程,负责每天数百GB的数据存储和分析.Hive的稳定性和性能对我们的数据分析非常关键. 在几次升级Hive的过程中,我们遇到了一些大大小小的问题.通过向社区的咨询和自己的努力,在解决这些问题的同时我们对Hive将SQL编译为MapRedu

详解Hive的架构、工作原理及安装步骤

一.Hive是什么? Hive 是基于 Hadoop 构建的一套数据仓库分析系统,它提供了丰富的 SQL 查询方式来分析存储在 Hadoop 分布式文件系统中的数据, 可以将结构化的数据文件映射为一张数据库表,并提供完整的 SQL 查询功能,可以将 SQL 语句转换为 MapReduce 任务进行运行,通过自己的 SQL 去 查询分析需要的内容,这套 SQL 简称 Hive SQL. 二.理解Hive 架构 Hive 架构可以分为四部分. 用户接口 Hive 对外提供了三种服务模式,即 Hive

hive 基本架构

如下图所示,从逻辑上来看,Hive包含了3大部分. Hive Clients Hive Services Hive Storage and Computing 用户操作Hive的接口主要有三个:CLI,Client 和 WUI. 其中最常用的是CLI,Cli启动的时候,会同时启动一个Hive副本. Client是Hive的客户端,用户连接至Hive Server.在启动 Client模式的时候,需要指出Hive Server所在节点,并且在该节点启动Hive Server.而客户端则又可以分为三

hive概念、架构、部署及原理介绍

转:https://www.aboutyun.com/thread-21544-1-1.html 问题导读: 1.Hive 是什么? 2.Hive 架构分哪几部分? 3.Hive 文件格式是怎样的? 一.Hive是什么? Hive 是基于 Hadoop 构建的一套数据仓库分析系统,它提供了丰富的 SQL 查询方式来分析存储在 Hadoop 分布式文件系统中的数据, 可以将结构化的数据文件映射为一张数据库表,并提供完整的 SQL 查询功能,可以将 SQL 语句转换为 MapReduce 任务进行运

Hive创建表格报【Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException】引发的血案

在成功启动Hive之后感慨这次终于没有出现Bug了,满怀信心地打了长长的创建表格的命令,结果现实再一次给了我一棒,报了以下的错误Error, return code 1 from org.apache.Hadoop.hive.ql.exec.DDLTask. MetaException,看了一下错误之后,先是楞了一下,接着我就发出感慨,自从踏上编程这条不归路之后,就没有一天不是在找Bug的路上就是在处理Bug,给自己贴了个标签:找Bug就跟吃饭一样的男人.抒发心中的感慨之后,该干活还是的干活.

Hive介绍、安装(转)

1.Hive介绍 1.1 Hive介绍 Hive是一个基于Hadoop的开源数据仓库工具,用于存储和处理海量结构化数据.它是Facebook 2008年8月开源的一个数据仓库框架,提供了类似于SQL语法的HQL语句作为数据访问接口,Hive有如下优缺点: l  优点: 1.Hive 使用类SQL 查询语法, 最大限度的实现了和SQL标准的兼容,大大降低了传统数据分析人员学习的曲线: 2.使用JDBC 接口/ODBC接口,开发人员更易开发应用: 3.以MR 作为计算引擎.HDFS 作为存储系统,为