算法第三章上机实践报告——动态规划

1.实践题目

7-1 数字三角形 (30 分)

给定一个由 n行数字组成的数字三角形如下图所示。试设计一个算法,计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大。

输入格式:

输入有n+1行:

第 1 行是数字三角形的行数 n,1<=n<=100。

接下来 n行是数字三角形各行中的数字。所有数字在0..99 之间。

输出格式:

输出最大路径的值。

输入样例:

在这里给出一组输入。例如:

5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

输出样例:

在这里给出相应的输出。例如:

30

2.问题描述

一个n行的数字三角形,每行有n个数字,从顶至低,每次只能从选择的数字的左下角或者右下角中选择一个路径往下,一直到底部考虑该路径经过的数字总和最大。

我的代码:

#include<iostream>
#include<cmath>
using namespace std;

int main(){
    int n;
    cin>>n;
    int a[101][101];
    int sum[101][101];
    for(int i=1;i<=n;i++){
        for(int j=1;j<=i;j++){
            cin>>a[i][j];
        }
    }
    for(int i=1;i<=n;i++){
        sum[n][i] = a[n][i];
    }
    for(int i=n;i>0;i--){
        for(int j=1;j<=i;j++){
            if(sum[i][j]>=sum[i][j+1]){
                sum[i-1][j] = a[i-1][j] + sum[i][j];
            }
            else{
                sum[i-1][j] = a[i-1][j] + sum[i][j+1];
            }
        }
    }
    cout<<sum[1][1];
}

3.算法描述

首先输入n,表示n行数字,接着用一个二维数组a[i][j]存放输入的数字,数组的行对应数字行,数组列对应数字所在行的位置,接着开始排序,先将,最后一行复制到新的一个二维数组上sum[n][i] = a[n][i],比较最后一行的第一个数和第二个数,将大的数字和上一行的第一个数相加存放到和a数组一样的位置的sum数组上,接着在比较第二个数和第三个数,再将大的数字和上一行第二个数字相加存放到sum数组上,以此类推,直到和第一行的数字相加,sum[1][1] 就是最大路径和的值。

4.时间空间复杂度

时间复杂度为O(n^2),排序时所用的二重循环,所以时间复杂度为O(n^2)。

空间复杂度:在主函数中给变量分配的空间为常数,所以空间复杂度为O(1)。

5.个人体会

在实践前,对于动态规划问题的算法还是很模糊,不知道从如何开始下手考虑问题,经历算法实践课之后,在和结对编程队友逐步讨论下慢慢解决问题,对动态规划有了更深一步的理解,但是在实现想法的过程中还是会有力不从心的感觉,还需要自身多去尝试打出代码,想出解决思路,从递归问题优化到更简单的方法,以后还需要更加努力,多加尝试,才会变得更好。

原文地址:https://www.cnblogs.com/ydh52/p/11708533.html

时间: 2024-10-31 10:28:32

算法第三章上机实践报告——动态规划的相关文章

揭露动态规划真面目——算法第三章上机实践报告

算法第三章上机实践报告 一.        实践题目 7-2 最大子段和 (40 分) 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值.当所给的整数均为负数时,定义子段和为0. 要求算法的时间复杂度为O(n). 输入格式: 输入有两行: 第一行是n值(1<=n<=10000): 第二行是n个整数. 输出格式: 输出最大子段和. 输入样例: 在这里给出一组输入.例如: 6 -2 11 -4 13 -5

算法第三章上机实践报告

实践题目 7-1 数字三角形 (30 分) 给定一个由 n行数字组成的数字三角形如下图所示.试设计一个算法,计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大. 输入格式: 输入有n+1行: 第 1 行是数字三角形的行数 n,1<=n<=100. 接下来 n行是数字三角形各行中的数字.所有数字在0..99 之间. 输出格式: 输出最大路径的值. 输入样例: 在这里给出一组输入.例如: 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5

算法第三章上机实践报告之数字三角形

1.实践题目 7-1 数字三角形 (30 分) 给定一个由 n行数字组成的数字三角形如下图所示.试设计一个算法,计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大. 输入格式: 输入有n+1行: 第 1 行是数字三角形的行数 n,1<=n<=100. 接下来 n行是数字三角形各行中的数字.所有数字在0..99 之间. 输出格式: 输出最大路径的值. 输入样例: 在这里给出一组输入.例如: 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6

贪心算法?我全都要!——算法第四章上机实践报告

算法第四章上机实践报告 一.        实践题目 4-1 程序存储问题 (90 分) 设有n 个程序{1,2,…, n }要存放在长度为L的磁带上.程序i存放在磁带上的长度是 li,1≤i≤n. 程序存储问题要求确定这n 个程序在磁带上的一个存储方案, 使得能够在磁带上存储尽可能多的程序. 对于给定的n个程序存放在磁带上的长度,计算磁带上最多可以存储的程序数. 输入格式: 第一行是2 个正整数,分别表示文件个数n和磁带的长度L.接下来的1行中,有n个正整数,表示程序存放在磁带上的长度. 输出

『嗨威说』算法设计与分析 - PTA 数字三角形 / 最大子段和 / 编辑距离问题(第三章上机实践报告)

本文索引目录: 一.PTA实验报告题1 : 数字三角形 1.1 实践题目 1.2 问题描述 1.3 算法描述 1.4 算法时间及空间复杂度分析 二.PTA实验报告题2 : 最大子段和 2.1 实践题目 2.2 问题描述 2.3 算法描述 2.4 算法时间及空间复杂度分析 三.PTA实验报告题3 : 编辑距离问题 3.1 实践题目 3.2 问题描述 3.3 算法描述 3.4 算法时间及空间复杂度分析 四.实验心得体会(实践收获及疑惑) 一.PTA实验报告题1 : 数字三角形 1.1 实践题目: 1

第三章上机实践报告

1.实践题目 7-3 编辑距离问题 2.问题描述 设A和B是2个字符串.要用最少的字符操作将字符串A转换为字符串B.这里所说的字符操作包括 (1)删除一个字符: (2)插入一个字符: (3)将一个字符改为另一个字符. 将字符串A变换为字符串B所用的最少字符操作数称为字符串A到 B的编辑距离,记为d(A,B). 对于给定的字符串A和字符串B,计算其编辑距离 d(A,B). 3.算法描述 填表,先给第一行赋初值,然后每个格填入它左边,正上方和左上角这三个数的最小值,最后右下角的数即为问题的解. 4.

算法第3章上机实践报告

1.实践题目  7-1 数字三角形 2.问题描述 给定一个由 n行数字组成的数字三角形如下图所示.试设计一个算法, 计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大. 3.算法描述 求以一个的数为顶至底的数字总和 等于求以这个数左边或右边的数为顶至底的数字总和的最大值加上这个数本身 得出递推方程 m[i][j]=max( m[i+1][j], max[i+1][j+1] )+a[i][j] 从下至上填表 4.算法时间及空间复杂度分析 双重循环对维

算法第三章上机实践

1.实践题目 最大子段和 2.问题描述 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],-,a[n],求该序列如a[i]+a[i+1]+-+a[j]的子段和的最大值.当所给的整数均为负数时,定义子段和为0. 要求算法的时间复杂度为O(n). 输入格式: 输入有两行: 第一行是n值(1<=n<=10000): 第二行是n个整数. 输出格式: 输出最大子段和. 3.算法描述 int maxsum(int a[],int n) { int sum=0,k=0; for(int i=

算法第四章上机实践报告

一.实践题目:删数问题 二.问题描述: 给定一个n位的正整数a,去掉其中任意k(k≤n) 个数字后,剩下的数字按照原次序排列成一个的新的正整数.在给定的n位正整数a和正整数k的情况下,输出完成该操作后剩下的正整数. 三.算法描述: 正整数的位数不定,用long long去存不一定存的下,所以用一个字符数组str[]来存储.此处运用一种贪心策略,不停的对这个整数进行扫描,当发现当前位的后一位比当前位小的情况,将当前位删除(例如1873,删除8肯定比删除7更优),若所有位数的数字按照升序排列,则删除