JVM 学习总结

目录

  • Java内存区域

    • 运行时数据区 & Java 内存结构 & Java 内存区域

      • 1. 程序计数器
      • 2. Java 虚拟机栈
      • 3. 本地方法栈
      • 4. 堆
      • 5. 方法区
      • 6. 运行时常量池
      • 7. 直接内存
    • HotSpot 虚拟机对象的奥秘
      • 对象的创建
      • 对象的内存布局
      • 对象的访问定位
  • JVM 垃圾回收
    • 常见面试题
    • 对象已经死亡?
      • 1. 引用计数法
      • 2. 可达性分析算法
      • 3. 四种引用类型
      • 4. 不可达对象真的死亡了吗?
      • 5. 如何判断一个常量是废弃常量?
      • 6. 如何判断一个类是无用的类?
    • 垃圾回收算法
      • 1 标记-清除算法
      • 2. 复制算法
      • 3. 标记-整理算法
      • 4. 分代收集算法
    • 垃圾收集器
      • 1. Serial 收集器
      • 2. ParNew 收集器
      • 3. Parallel Scavenge 收集器
      • 4. Serial Old 收集器
      • 5. Parallel Old 收集器
      • 6. CMS 收集器
      • 7. G1 收集器
    • 内存的分配与回收
  • 类加载机制
    • 类加载过程

      • 1. 加载
      • 2. 验证
      • 3. 准备
      • 4. 解析
      • 5. 初始化
    • 类加载器
      • 类加载器介绍
      • 双亲委派模型介绍
      • 双亲委派模型实现源码分析
      • 双亲委派模型的好处
      • 如果我们不想用双亲委派模型怎么办?
      • 自定义类加载器
      • 推荐阅读
  • 参考

Java内存区域

运行时数据区 & Java 内存结构 & Java 内存区域

JDK 1.8 之前:

JDK 1.8 :

线程私有的:

  • 程序计数器
  • 虚拟机栈
  • 本地方法栈

线程共享的:

  • 方法区(1.8 转到直接内存的元空间)
  • 直接内存 (非运行时数据区的一部分)

1. 程序计数器

程序计数器是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示器。字节码解释器工作时通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等功能都需要依赖这个计数器来完成。

另外,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。

从上面的介绍中我们知道程序计数器主要有两个作用:

  1. 字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。
  2. 在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。

注意:程序计数器是唯一一个不会出现 OutOfMemoryError 的内存区域,它的生命周期随着线程的创建而创建,随着线程的结束而死亡。

2. Java 虚拟机栈

与程序计数器一样,Java 虚拟机栈也是线程私有的,它的生命周期和线程相同,描述的是 Java 方法执行的内存模型,每次方法调用的数据都是通过栈传递的。

Java 内存可以粗糙的区分为堆内存(Heap)和栈内存 (Stack),其中栈就是现在说的虚拟机栈,或者说是虚拟机栈中局部变量表部分。 (实际上,Java 虚拟机栈是由一个个栈帧组成,而每个栈帧中都拥有:局部变量表、操作数栈、动态链接、方法出口信息。)

局部变量表主要存放了编译器可知的各种数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference 类型,它不同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置)。

Java 虚拟机栈会出现两种异常:StackOverFlowError 和 OutOfMemoryError。

  • StackOverFlowError: 若 Java 虚拟机栈的内存大小不允许动态扩展,那么当线程请求栈的深度超过当前 Java 虚拟机栈的最大深度的时候,就抛出 StackOverFlowError 异常。
  • OutOfMemoryError: 若 Java 虚拟机栈的内存大小允许动态扩展,且当线程请求栈时内存用完了,无法再动态扩展了,此时抛出 OutOfMemoryError 异常。

Java 虚拟机栈也是线程私有的,每个线程都有各自的 Java 虚拟机栈,而且随着线程的创建而创建,随着线程的死亡而死亡。

扩展:那么方法/函数如何调用?

Java 栈可用类比数据结构中栈,Java 栈中保存的主要内容是栈帧,每一次函数调用都会有一个对应的栈帧被压入 Java 栈,每一个函数调用结束后,都会有一个栈帧被弹出。

Java 方法有两种返回方式:

  1. return 语句。
  2. 抛出异常。

不管哪种返回方式都会导致栈帧被弹出。

3. 本地方法栈

和虚拟机栈所发挥的作用非常相似,区别是: 虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。

本地方法被执行的时候,在本地方法栈也会创建一个栈帧,用于存放该本地方法的局部变量表、操作数栈、动态链接、出口信息。

方法执行完毕后相应的栈帧也会出栈并释放内存空间,也会出现 StackOverFlowError 和 OutOfMemoryError 两种异常。

4. 堆

Java 虚拟机所管理的内存中最大的一块,Java 堆是所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存。

Java 堆是垃圾收集器管理的主要区域,因此也被称作GC 堆(Garbage Collected Heap).从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代:再细致一点有:Eden 空间、From Survivor、To Survivor 空间等。进一步划分的目的是更好地回收内存,或者更快地分配内存。

上图所示的 eden 区、s0 区、s1 区都属于新生代,tentired 区属于老年代。大部分情况,对象都会首先在 Eden 区域分配,在一次新生代垃圾回收后,如果对象还存活,则会进入 s0 或者 s1,并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1),当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

5. 方法区

方法区与 Java 堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然 Java 虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做 Non-Heap(非堆),目的应该是与 Java 堆区分开来。

方法区也被称为永久代。很多人都会分不清方法区和永久代的关系,为此我也查阅了文献。

5.1 方法区和永久代的关系

《Java 虚拟机规范》只是规定了有方法区这么个概念和它的作用,并没有规定如何去实现它。那么,在不同的 JVM 上方法区的实现肯定是不同的了。 方法区和永久代的关系很像 Java 中接口和类的关系,类实现了接口,而永久代就是 HotSpot 虚拟机对虚拟机规范中方法区的一种实现方式。 也就是说,永久代是 HotSpot 的概念,方法区是 Java 虚拟机规范中的定义,是一种规范,而永久代是一种实现,一个是标准一个是实现,其他的虚拟机实现并没有永久代这一说法。

5.2 常用参数

JDK 1.8 之前永久代还没被彻底移除的时候通常通过下面这些参数来调节方法区大小

-XX:PermSize=N //方法区 (永久代) 初始大小
-XX:MaxPermSize=N //方法区 (永久代) 最大大小,超过这个值将会抛出 OutOfMemoryError 异常:java.lang.OutOfMemoryError: PermGen

相对而言,垃圾收集行为在这个区域是比较少出现的,但并非数据进入方法区后就“永久存在”了。

JDK 1.8 的时候,方法区(HotSpot 的永久代)被彻底移除了(JDK1.7 就已经开始了),取而代之是元空间,元空间使用的是直接内存。

下面是一些常用参数:

-XX:MetaspaceSize=N //设置 Metaspace 的初始(和最小大小)
-XX:MaxMetaspaceSize=N //设置 Metaspace 的最大大小

与永久代很大的不同就是,如果不指定大小的话,随着更多类的创建,虚拟机会耗尽所有可用的系统内存。

5.3 为什么要将永久代 (PermGen) 替换为元空间 (MetaSpace) 呢?

整个永久代有一个 JVM 本身设置固定大小上限,无法进行调整,而元空间使用的是直接内存,受本机可用内存的限制,并且永远不会得到 java.lang.OutOfMemoryError。你可以使用 -XX:MaxMetaspaceSize 标志设置最大元空间大小,默认值为 unlimited,这意味着它只受系统内存的限制。-XX:MetaspaceSize 调整标志定义元空间的初始大小如果未指定此标志,则 Metaspace 将根据运行时的应用程序需求动态地重新调整大小。

当然这只是其中一个原因,还有很多底层的原因,这里就不提了。

6. 运行时常量池

运行时常量池是方法区的一部分。Class 文件中除了有类的版本、字段、方法、接口等描述信息外,还有常量池信息(用于存放编译期生成的各种字面量和符号引用)

既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出 OutOfMemoryError 异常。

JDK1.7 及之后版本的 JVM 已经将运行时常量池从方法区中移了出来,在 Java 堆(Heap)中开辟了一块区域存放运行时常量池。

——图片来源:https://blog.csdn.net/wangbiao007/article/details/78545189

7. 直接内存

直接内存并不是虚拟机运行时数据区的一部分,也不是虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用。而且也可能导致 OutOfMemoryError 异常出现。

JDK1.4 中新加入的 NIO(New Input/Output) 类,引入了一种基于通道(Channel)缓存区(Buffer) 的 I/O 方式,它可以直接使用 Native 函数库直接分配堆外内存,然后通过一个存储在 Java 堆中的 DirectByteBuffer 对象作为这块内存的引用进行操作。这样就能在一些场景中显著提高性能,因为避免了在 Java 堆和 Native 堆之间来回复制数据

本机直接内存的分配不会受到 Java 堆的限制,但是,既然是内存就会受到本机总内存大小以及处理器寻址空间的限制。

HotSpot 虚拟机对象的奥秘

对象的创建

Step1:类加载检查

虚拟机遇到一条 new 指令时,首先将去检查这个指令的参数是否能在常量池中定位到这个类的符号引用,并且检查这个符号引用代表的类是否已被加载过、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

Step2:分配内存

类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需的内存大小在类加载完成后便可确定,为对象分配空间的任务等同于把一块确定大小的内存从 Java 堆中划分出来。分配方式“指针碰撞”“空闲列表” 两种,选择那种分配方式由 Java 堆是否规整决定,而 Java 堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定

内存分配的两种方式:(补充内容,需要掌握)

选择以上两种方式中的哪一种,取决于 Java 堆内存是否规整。而 Java 堆内存是否规整,取决于 GC 收集器的算法是"标记-清除",还是"标记-整理"(也称作"标记-压缩"),值得注意的是,复制算法内存也是规整的

内存分配并发问题(补充内容,需要掌握)

在创建对象的时候有一个很重要的问题,就是线程安全,因为在实际开发过程中,创建对象是很频繁的事情,作为虚拟机来说,必须要保证线程是安全的,通常来讲,虚拟机采用两种方式来保证线程安全:

  • CAS+失败重试: CAS 是乐观锁的一种实现方式。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。虚拟机采用 CAS 配上失败重试的方式保证更新操作的原子性。
  • TLAB(本地线程分配缓冲) 为每一个线程预先在 Eden 区分配一块儿内存,JVM 在给线程中的对象分配内存时,首先在 TLAB 分配,当对象大于 TLAB 中的剩余内存或 TLAB 的内存已用尽时,再采用上述的 CAS 进行内存分配

Step3:初始化零值

内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),这一步操作保证了对象的实例字段在 Java 代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。

Step4:设置对象头

初始化零值完成之后,虚拟机要对对象进行必要的设置,例如这个对象是那个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的 GC 分代年龄等信息。 这些信息存放在对象头中。 另外,根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。

Step5:执行 init 方法

在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从 Java 程序的视角来看,对象创建才刚开始,<init> 方法还没有执行,所有的字段都还为零。所以一般来说,执行 new 指令之后会接着执行 <init> 方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。

对象的内存布局

在 Hotspot 虚拟机中,对象在内存中的布局可以分为 3 块区域:对象头实例数据对齐填充

  • Hotspot 虚拟机的对象头包括两部分信息第一部分用于存储对象自身的自身运行时数据(哈希码、GC 分代年龄、锁状态标志等等),另一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是那个类的实例。
  • 实例数据部分是对象真正存储的有效信息,也是在程序中所定义的各种类型的字段内容。
  • 对齐填充部分不是必然存在的,也没有什么特别的含义,仅仅起占位作用。 因为 Hotspot 虚拟机的自动内存管理系统要求对象起始地址必须是 8 字节的整数倍,换句话说就是对象的大小必须是 8 字节的整数倍。而对象头部分正好是 8 字节的倍数(1 倍或 2 倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。

对象的访问定位

建立对象就是为了使用对象,我们的 Java 程序通过栈上的 reference 数据来操作堆上的具体对象。对象的访问方式由虚拟机实现而定,目前主流的访问方式有①使用句柄②直接指针两种:

  1. 句柄: 如果使用句柄的话,那么 Java 堆中将会划分出一块内存来作为句柄池,reference 中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息;

  1. 直接指针: 如果使用直接指针访问,那么 Java 堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而 reference 中存储的直接就是对象的地址。

这两种对象访问方式各有优势。使用句柄来访问的最大好处是 reference 中存储的是稳定的句柄地址,在对象被移动时只会改变句柄中的实例数据指针,而 reference 本身不需要修改。使用直接指针访问方式最大的好处就是速度快,它节省了一次指针定位的时间开销。

JVM 垃圾回收

常见面试题

  • 如何判断对象是否死亡(两种方法)。
  • 简单的介绍一下强引用、软引用、弱引用、虚引用(虚引用与软引用和弱引用的区别、使用软引用能带来的好处)。
  • 如何判断一个常量是废弃常量
  • 如何判断一个类是无用的类
  • 垃圾收集有哪些算法,各自的特点?
  • HotSpot 为什么要分为新生代和老年代?
  • 常见的垃圾回收器有那些?
  • 介绍一下 CMS,G1 收集器。
  • Minor Gc 和 Full GC 有什么不同呢?
  • 内存模型和内存结构的关系

    https://www.cnblogs.com/wskwbog/p/11349042.html

    为什么要划分内存?

对象已经死亡?

堆中几乎放着所有的对象实例,对堆垃圾回收前的第一步就是要判断那些对象已经死亡(即不能再被任何途径使用的对象)。

1. 引用计数法

给对象中添加一个引用计数器,每当有一个地方引用它,计数器就加 1;当引用失效,计数器就减 1;任何时候计数器为 0 的对象就是不可能再被使用的。

这个方法实现简单,效率高,但是目前主流的虚拟机中并没有选择这个算法来管理内存,其最主要的原因是它很难解决对象之间相互循环引用的问题。 所谓对象之间的相互引用问题,如下面代码所示:除了对象 objA 和 objB 相互引用着对方之外,这两个对象之间再无任何引用。但是他们因为互相引用对方,导致它们的引用计数器都不为 0,于是引用计数算法无法通知 GC 回收器回收他们。

public class ReferenceCountingGc {
    Object instance = null;
    public static void main(String[] args) {
        ReferenceCountingGc objA = new ReferenceCountingGc();
        ReferenceCountingGc objB = new ReferenceCountingGc();
        objA.instance = objB;
        objB.instance = objA;
        objA = null;//要释放A的引用首先得释放B
        objB = null;//同理

    }
}

2. 可达性分析算法

这个算法的基本思想就是通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的。

3. 四种引用类型

无论是通过引用计数法判断对象引用数量,还是通过可达性分析法判断对象的引用链是否可达,判定对象的存活都与“引用”有关。

JDK1.2 之前,Java 中引用的定义很传统:如果 reference 类型的数据存储的数值代表的是另一块内存的起始地址,就称这块内存代表一个引用。

JDK1.2 以后,Java 对引用的概念进行了扩充,将引用分为强引用、软引用、弱引用、虚引用四种(引用强度逐渐减弱)

1.强引用(StrongReference)

以前我们使用的大部分引用实际上都是强引用,这是使用最普遍的引用。如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空间不足,Java 虚拟机宁愿抛出 OutOfMemoryError 错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。

2.软引用(SoftReference)

如果一个对象只具有软引用,那就类似于可有可无的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。

软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,JAVA 虚拟机就会把这个软引用加入到与之关联的引用队列中。

3.弱引用(WeakReference)

如果一个对象只具有弱引用,那就类似于可有可无的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。

弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。

4.虚引用(PhantomReference)

"虚引用"顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。

虚引用主要用来跟踪对象被垃圾回收的活动

虚引用与软引用和弱引用的一个区别在于: 虚引用必须和引用队列(ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。

特别注意,在程序设计中一般很少使用弱引用与虚引用,使用软引用的情况较多,这是因为软引用可以加速 JVM 对垃圾内存的回收速度,可以维护系统的运行安全,防止内存溢出(OutOfMemory)等问题的产生

4. 不可达对象真的死亡了吗?

即使在可达性分析法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑阶段”,要真正宣告一个对象死亡,至少要经历两次标记过程;可达性分析法中不可达的对象被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行 finalize 方法。当对象没有覆盖 finalize 方法,或 finalize 方法已经被虚拟机调用过时,虚拟机将这两种情况视为没有必要执行。

被判定为需要执行的对象将会被放在一个队列中进行第二次标记,除非这个对象与引用链上的任何一个对象建立关联(在finalize()方法中),否则就会被真的回收。

5. 如何判断一个常量是废弃常量?

运行时常量池主要回收的是废弃的常量。那么,我们如何判断一个常量是废弃常量呢?

假如在常量池中存在字符串 "abc",如果当前没有任何 String 对象引用该字符串常量的话,就说明常量 "abc" 就是废弃常量,如果这时发生内存回收的话而且有必要的话,"abc" 就会被系统清理出常量池。

注意: JDK1.7 及之后版本的 JVM 已经将运行时常量池从方法区中移了出来,在 Java 堆(Heap)中开辟了一块区域存放运行时常量池。

6. 如何判断一个类是无用的类?

方法区主要回收的是无用的类,那么如何判断一个类是无用的类的呢?

判定一个常量是否是“废弃常量”比较简单,而要判定一个类是否是“无用的类”的条件则相对苛刻许多。类需要同时满足下面 3 个条件才能算是 “无用的类”

  • 该类所有的实例都已经被回收,也就是 Java 堆中不存在该类的任何实例。
  • 加载该类的 ClassLoader 已经被回收。
  • 该类对应的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

虚拟机可以对满足上述 3 个条件的无用类进行回收,这里说的仅仅是“可以”,而并不是和对象一样不使用了就会必然被回收。

垃圾回收算法

  • 标记清除法
  • 复制算法
  • 标记-整理算法
  • 分代收集算法

1 标记-清除算法

该算法分为“标记”和“清除”阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。它是最基础的收集算法,后续的算法都是对其不足进行改进得到。这种垃圾收集算法会带来两个明显的问题:

  1. 效率问题:标记和清除效率都不高
  2. 空间问题(标记清除后会产生大量不连续的碎片)

2. 复制算法

为了解决效率问题,“复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。

3. 标记-整理算法

根据老年代的特点提出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。

4. 分代收集算法

当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将 java 堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。

比如在新生代中,每次收集都会有大量对象死去,所以可以选择复制算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。

延伸面试问题: HotSpot 为什么要分为新生代和老年代?

根据上面的对分代收集算法的介绍回答。

垃圾收集器

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。

虽然我们对各个收集器进行比较,但并非要挑选出一个最好的收集器。因为直到现在为止还没有最好的垃圾收集器出现,更加没有万能的垃圾收集器,我们能做的就是根据具体应用场景选择适合自己的垃圾收集器。试想一下:如果有一种四海之内、任何场景下都适用的完美收集器存在,那么我们的 HotSpot 虚拟机就不会实现那么多不同的垃圾收集器了。

1. Serial 收集器

Serial(串行)收集器收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( "Stop The World" ),直到它收集结束。

新生代采用复制算法,老年代采用标记-整理算法。

虚拟机的设计者们当然知道 Stop The World 带来的不良用户体验,所以在后续的垃圾收集器设计中停顿时间在不断缩短(仍然还有停顿,寻找最优秀的垃圾收集器的过程仍然在继续)。

但是 Serial 收集器有没有优于其他垃圾收集器的地方呢?当然有,它简单而高效(与其他收集器的单线程相比)。Serial 收集器由于没有线程交互的开销,自然可以获得很高的单线程收集效率。Serial 收集器对于运行在 Client 模式下的虚拟机来说是个不错的选择。

2. ParNew 收集器

ParNew 收集器其实就是 Serial 收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和 Serial 收集器完全一样。

新生代采用复制算法,老年代采用标记-整理算法。

它是许多运行在 Server 模式下的虚拟机的首要选择,除了 Serial 收集器外,只有它能与 CMS 收集器(真正意义上的并发收集器,后面会介绍到)配合工作。

3. Parallel Scavenge 收集器

Parallel Scavenge 收集器也是使用复制算法的多线程收集器,它看上去几乎和ParNew都一样。 那么它有什么特别之处呢?

-XX:+UseParallelGC
使用 Parallel 收集器+ 老年代串行
-XX:+UseParallelOldGC
使用 Parallel 收集器+ 老年代并行

Parallel Scavenge 收集器关注点是吞吐量(高效率的利用 CPU)。CMS 等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量就是 CPU 中用于运行用户代码的时间与 CPU 总消耗时间的比值。 Parallel Scavenge 收集器提供了很多参数供用户找到最合适的停顿时间或最大吞吐量,如果对于收集器运作不太了解的话,手工优化存在困难的话可以选择把内存管理优化交给虚拟机去完成也是一个不错的选择。

新生代采用复制算法,老年代采用标记-整理算法。

4. Serial Old 收集器

Serial 收集器的老年代版本,它同样是一个单线程收集器。它主要有两大用途:一种用途是在 JDK1.5 以及以前的版本中与 Parallel Scavenge 收集器搭配使用,另一种用途是作为 CMS 收集器的后备方案。

5. Parallel Old 收集器

Parallel Scavenge 收集器的老年代版本。使用多线程和“标记-整理”算法。在注重吞吐量以及 CPU 资源的场合,都可以优先考虑 Parallel Scavenge 收集器和 Parallel Old 收集器。

6. CMS 收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用。

CMS(Concurrent Mark Sweep)收集器是 HotSpot 虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。

从名字中的Mark Sweep这两个词可以看出,CMS 收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:

  • 初始标记: 暂停所有的其他线程,并记录下直接与 root 相连的对象,速度很快 ;
  • 并发标记: 同时开启 GC 和用户线程,用一个闭包结构去记录可达对象。但在这个阶段结束,这个闭包结构并不能保证包含当前所有的可达对象。因为用户线程可能会不断的更新引用域,所以 GC 线程无法保证可达性分析的实时性。所以这个算法里会跟踪记录这些发生引用更新的地方。
  • 重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短
  • 并发清除: 开启用户线程,同时 GC 线程开始对为标记的区域做清扫。

从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面三个明显的缺点:

  • 对 CPU 资源敏感;
  • 无法处理浮动垃圾;
  • 它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生,不利于大对象的分配

7. G1 收集器

G1 (Garbage-First) 是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足 GC 停顿时间要求的同时,还具备高吞吐量性能特征.

被视为 JDK1.7 中 HotSpot 虚拟机的一个重要进化特征。它具备一下特点:

  • 并行与并发:G1 能充分利用 CPU、多核环境下的硬件优势,使用多个 CPU(CPU 或者 CPU 核心)来缩短 Stop-The-World 停顿时间。部分其他收集器原本需要停顿 Java 线程执行的 GC 动作,G1 收集器仍然可以通过并发的方式让 java 程序继续执行。
  • 分代收集:虽然 G1 可以不需要其他收集器配合就能独立管理整个 GC 堆,但是还是保留了分代的概念。
  • 空间整合:与 CMS 的“标记--清理”算法不同,G1 从整体来看是基于“标记整理”算法实现的收集器;从局部上来看是基于“复制”算法实现的。
  • 可预测的停顿:这是 G1 相对于 CMS 的另一个大优势,降低停顿时间是 G1 和 CMS 共同的关注点,但 G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为 M 毫秒的时间片段内。

G1 收集器的运作大致分为以下几个步骤:

  • 初始标记
  • 并发标记
  • 最终标记
  • 筛选回收

G1 收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的 Region(这也就是它的名字 Garbage-First 的由来)。这种使用 Region 划分内存空间以及有优先级的区域回收方式,保证了 GF 收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)。

内存的分配与回收

Java 的自动内存管理主要是针对对象内存的回收和对象内存的分配。同时,Java 自动内存管理最核心的功能是 内存中对象的分配与回收。

Java 堆是垃圾收集器管理的主要区域,因此也被称作GC 堆(Garbage Collected Heap).从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代:再细致一点有:Eden 空间、From Survivor、To Survivor 空间等。进一步划分的目的是更好地回收内存,或者更快地分配内存。

堆空间的基本结构:

新生代 + 老年代

新生代 = Eden + s0 + s1(8:1:1)

上图所示的 eden 区、s0("From") 区、s1("To") 区都属于新生代,tentired 区属于老年代。大部分情况,对象都会首先在 Eden 区域分配,在一次新生代垃圾回收后,如果对象还存活,则会进入 s1("To"),并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1),当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。经过这次GC后,Eden区和"From"区已经被清空。这个时候,"From"和"To"会交换他们的角色,也就是新的"To"就是上次GC前的“From”,新的"From"就是上次GC前的"To"。不管怎样,都会保证名为To的Survivor区域是空的。Minor GC会一直重复这样的过程,直到“To”区被填满,"To"区被填满之后,会将所有对象移动到年老代中。

1. 对象优先分配在 Eden

目前主流的垃圾收集器都会采用分代回收算法,因此需要将堆内存分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。

大多数情况下,对象在新生代中 eden 区分配。当 eden 区没有足够空间进行分配时,虚拟机将发起一次 Minor GC.下面我们来进行实际测试以下。

在测试之前我们先来看看 Minor GC 和 Full GC 有什么不同呢?

  • 新生代 GC(Minor GC):指发生新生代的的垃圾收集动作,Minor GC 非常频繁,回收速度一般也比较快。
  • 老年代 GC(Major GC/Full GC):指发生在老年代的 GC,出现了 Major GC 经常会伴随至少一次的 Minor GC(并非绝对),Major GC 的速度一般会比 Minor GC 的慢 10 倍以上。

测试:

public class GCTest {

    public static void main(String[] args) {
        byte[] allocation1, allocation2;
        allocation1 = new byte[30900*1024];
        //allocation2 = new byte[900*1024];
    }
}

通过以下方式运行:

添加的参数:-XX:+PrintGCDetails

运行结果 (红色字体描述有误,应该是对应于 JDK1.7 的永久代):

从上图我们可以看出 eden 区内存几乎已经被分配完全(即使程序什么也不做,新生代也会使用 2000 多 k 内存)。假如我们再为 allocation2 分配内存会出现什么情况呢?

allocation2 = new byte[900*1024];

简单解释一下为什么会出现这种情况: 因为给 allocation2 分配内存的时候 eden 区内存几乎已经被分配完了,我们刚刚讲了当 Eden 区没有足够空间进行分配时,虚拟机将发起一次 Minor GC.GC 期间虚拟机又发现 allocation1 无法存入 Survivor 空间,所以只好通过 分配担保机制 把新生代的对象提前转移到老年代中去,老年代上的空间足够存放 allocation1,所以不会出现 Full GC。执行 Minor GC 后,后面分配的对象如果能够存在 eden 区的话,还是会在 eden 区分配内存。可以执行如下代码验证:

public class GCTest {

    public static void main(String[] args) {
        byte[] allocation1, allocation2,allocation3,allocation4,allocation5;
        allocation1 = new byte[32000*1024];
        allocation2 = new byte[1000*1024];
        allocation3 = new byte[1000*1024];
        allocation4 = new byte[1000*1024];
        allocation5 = new byte[1000*1024];
    }
}

2. 大对象直接进入老年代

大对象就是需要大量连续内存空间的对象(比如:字符串、数组)。

为什么要这样呢?

为了避免为大对象分配内存时由于分配担保机制带来的复制而降低效率。

3. 长期存活的对象将进入老年代

既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。

如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为 1.对象在 Survivor 中每熬过一次 MinorGC,年龄就增加 1 岁,当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

4. 动态对象年龄判断

为了更好的适应不同程序的内存情况,虚拟机不是永远要求对象年龄必须达到了某个值才能进入老年代,如果 Survivor 空间中相同年龄所有对象大小的总和大于 Survivor 空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无需达到要求的年龄。

5. 空间分配担保机制

在发生Minor GC之前,虚拟机会先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那么Minor GC可以确保是安全的。如果不成立,则虚拟机会查看HandlePromotionFailure设置值是否允许担保失败。如果允许,那么会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次Minor GC,尽管这次Minor GC是有风险的;如果小于,或者HandlePromotionFailure设置不允许冒险,那这时也要改为进行一次Full GC。
下面解释一下“冒险”是冒了什么风险,前面提到过,新生代使用复制收集算法,但为了内存利用率,只使用其中一个Survivor空间来作为轮换备份,因此当出现大量对象在Minor GC后仍然存活的情况(最极端的情况就是内存回收后新生代中所有对象都存活),就需要老年代进行分配担保,把Survivor无法容纳的对象直接进入老年代。与生活中的贷款担保类似,老年代要进行这样的担保,前提是老年代本身还有容纳这些对象的剩余空间,一共有多少对象会活下来在实际完成内存回收之前是无法明确知道的,所以只好取之前每一次回收晋升到老年代对象容量的平均大小值作为经验值,与老年代的剩余空间进行比较,决定是否进行Full GC来让老年代腾出更多空间。
取平均值进行比较其实仍然是一种动态概率的手段,也就是说,如果某次Minor GC存活后的对象突增,远远高于平均值的话,依然会导致担保失败(Handle Promotion Failure)。如果出现了HandlePromotionFailure失败,那就只好在失败后重新发起一次Full GC。虽然担保失败时绕的圈子是最大的,但大部分情况下都还是会将HandlePromotionFailure开关打开,避免Full GC过于频繁,参见如下代码,请读者在JDK 6 Update 24之前的版本中运行测试。

//空间分配担保:
private static final int _1MB = 1024 * 1024;
/**
 * VM参数:-Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 -XX:-HandlePromotionFailure
 */
@SuppressWarnings("unused")
public static void testHandlePromotion() {
  byte[] allocation1, allocation2, allocation3, allocation4, allocation5, allocation6, allocation7;
  allocation1 = new byte[2 * _1MB];
  allocation2 = new byte[2 * _1MB];
  allocation3 = new byte[2 * _1MB];
  allocation1 = null;
  allocation4 = new byte[2 * _1MB];
  allocation5 = new byte[2 * _1MB];
  allocation6 = new byte[2 * _1MB];
  allocation4 = null;
  allocation5 = null;
  allocation6 = null;
  allocation7 = new byte[2 * _1MB];
}

JDK 6 Update 24之后的规则变为只要老年代的连续空间大于新生代对象总大小或者历次晋升的平均大小就会进行Minor GC,否则将进行Full GC。

类加载机制

类加载过程

类的整个生命周期:加载、验证、准备、解析、初始化、使用、卸载等 7 个阶段

Class 文件需要加载到虚拟机中之后才能运行和使用,那么虚拟机是如何加载这些 Class 文件呢?

系统加载 Class 类型的文件主要三步:加载->连接->初始化。连接过程又可分为三步:验证->准备->解析

1. 加载

类加载过程的第一步,主要完成下面3件事情:

  1. 通过全类名获取定义此类的二进制字节流
  2. 将字节流所代表的静态存储结构转换为方法区的运行时数据结构
  3. 在内存中生成一个代表该类的 Class 对象,作为方法区这些数据的访问入口

虚拟机规范多上面这3点并不具体,因此是非常灵活的。比如:"通过全类名获取定义此类的二进制字节流" 并没有指明具体从哪里获取、怎样获取。比如:比较常见的就是从 ZIP 包中读取(日后出现的JAR、EAR、WAR格式的基础)、其他文件生成(典型应用就是JSP)等等。

一个非数组类的加载阶段(加载阶段获取类的二进制字节流的动作)是可控性最强的阶段,这一步我们可以去完成还可以自定义类加载器去控制字节流的获取方式(重写一个类加载器的 loadClass() 方法)。数组类型不通过类加载器创建,它由 Java 虚拟机直接创建。

加载阶段和连接阶段的部分内容是交叉进行的,加载阶段尚未结束,连接阶段可能就已经开始了。

2. 验证

3. 准备

准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些内存都将在方法区中分配。对于该阶段有以下几点需要注意:

  1. 这时候进行内存分配的仅包括类变量(static),而不包括实例变量,实例变量会在对象实例化时随着对象一块分配在 Java 堆中。
  2. 这里所设置的初始值"通常情况"下是数据类型默认的零值(如0、0L、null、false等),比如我们定义了public static int value=111 ,那么 value 变量在准备阶段的初始值就是 0 而不是111(初始化阶段才会复制)。特殊情况:比如给 value 变量加上了 fianl 关键字public static final int value=111 ,那么准备阶段 value 的值就被复制为 111。

4. 解析

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用限定符7类符号引用进行。

  • 符号引用就是一组符号来描述目标,可以是任何字面量。
  • 直接引用就是直接指向目标的指针、相对偏移量或一个间接定位到目标的句柄。

在程序实际运行时,只有符号引用是不够的,举个例子:在程序执行方法时,系统需要明确知道这个方法所在的位置。Java 虚拟机为每个类都准备了一张方法表来存放类中所有的方法。当需要调用一个类的方法的时候,只要知道这个方法在方发表中的偏移量就可以直接调用该方法了。通过解析操作符号引用就可以直接转变为目标方法在类中方法表的位置,从而使得方法可以被调用。

综上,解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程,也就是得到类或者字段、方法在内存中的指针或者偏移量。

5. 初始化

初始化是类加载的最后一步,也是真正执行类中定义的 Java 程序代码(字节码),初始化阶段是执行类构造器 <clinit> ()方法的过程。

对于<clinit>() 方法的调用,虚拟机会自己确保其在多线程环境中的安全性。因为 <clinit>() 方法是带锁线程安全,所以在多线程环境下进行类初始化的话可能会引起死锁,并且这种死锁很难被发现。

对于初始化阶段,虚拟机严格规范了有且只有5中情况下,必须对类进行初始化:

  1. 当遇到 new 、 getstatic、putstatic或invokestatic 这4条直接码指令时,比如 new 一个类,读取一个静态字段(未被 final 修饰)、或调用一个类的静态方法时。
  2. 使用 java.lang.reflect 包的方法对类进行反射调用时 ,如果类没初始化,需要触发其初始化。
  3. 初始化一个类,如果其父类还未初始化,则先触发该父类的初始化。
  4. 当虚拟机启动时,用户需要定义一个要执行的主类 (包含 main 方法的那个类),虚拟机会先初始化这个类。
  5. 当使用 JDK1.7 的动态动态语言时,如果一个 MethodHandle 实例的最后解析结构为 REF_getStatic、REF_putStatic、REF_invokeStatic、的方法句柄,并且这个句柄没有初始化,则需要先触发器初始化。

类加载器

类加载器介绍

JVM 中内置了三个重要的 ClassLoader,除了 BootstrapClassLoader 其他类加载器均由 Java 实现且全部继承自java.lang.ClassLoader

  1. BootstrapClassLoader(启动类加载器) :最顶层的加载类,由C++实现,负责加载 %JAVA_HOME%/lib目录下的jar包和类或者或被 -Xbootclasspath参数指定的路径中的所有类。
  2. ExtensionClassLoader(扩展类加载器) :主要负责加载目录 %JRE_HOME%/lib/ext 目录下的jar包和类,或被 java.ext.dirs 系统变量所指定的路径下的jar包。
  3. AppClassLoader(应用程序类加载器) :面向我们用户的加载器,负责加载当前应用classpath下的所有jar包和类。

双亲委派模型介绍

每一个类都有一个对应它的类加载器。系统中的 ClassLoder 在协同工作的时候会默认使用 双亲委派模型 。即在类加载的时候,系统会首先判断当前类是否被加载过。已经被加载的类会直接返回,否则才会尝试加载。加载的时候,首先会把该请求委派该父类加载器的 loadClass() 处理,因此所有的请求最终都应该传送到顶层的启动类加载器 BootstrapClassLoader 中。当父类加载器无法处理时,才由自己来处理。当父类加载器为null时,会使用启动类加载器 BootstrapClassLoader 作为父类加载器。

每个类加载都有一个父类加载器,我们通过下面的程序来验证。

public class ClassLoaderDemo {
    public static void main(String[] args) {
        System.out.println("ClassLodarDemo's ClassLoader is " + ClassLoaderDemo.class.getClassLoader());
        System.out.println("The Parent of ClassLodarDemo's ClassLoader is " + ClassLoaderDemo.class.getClassLoader().getParent());
        System.out.println("The GrandParent of ClassLodarDemo's ClassLoader is " + ClassLoaderDemo.class.getClassLoader().getParent().getParent());
    }
}

Output

ClassLodarDemo's ClassLoader is [email protected]
The Parent of ClassLodarDemo's ClassLoader is [email protected]
The GrandParent of ClassLodarDemo's ClassLoader is null

AppClassLoader的父类加载器为ExtClassLoader ExtClassLoader的父类加载器为null,null并不代表ExtClassLoader没有父类加载器,而是 BootstrapClassLoader

其实这个双亲翻译的容易让别人误解,我们一般理解的双亲都是父母,这里的双亲更多地表达的是“父母这一辈”的人而已,并不是说真的有一个 Mother ClassLoader 和一个 Father ClassLoader 。另外,类加载器之间的“父子”关系也不是通过继承来体现的,是由“优先级”来决定。官方API文档对这部分的描述如下:

The Java platform uses a delegation model for loading classes. The basic idea is that every class loader has a "parent" class loader. When loading a class, a class loader first "delegates" the search for the class to its parent class loader before attempting to find the class itself.

双亲委派模型实现源码分析

双亲委派模型的实现代码非常简单,逻辑非常清晰,都集中在 java.lang.ClassLoaderloadClass() 中,相关代码如下所示。

private final ClassLoader parent;
protected Class<?> loadClass(String name, boolean resolve)
        throws ClassNotFoundException
    {
        synchronized (getClassLoadingLock(name)) {
            // 首先,检查请求的类是否已经被加载过
            Class<?> c = findLoadedClass(name);
            if (c == null) {
                long t0 = System.nanoTime();
                try {
                    if (parent != null) {//父加载器不为空,调用父加载器loadClass()方法处理
                        c = parent.loadClass(name, false);
                    } else {//父加载器为空,使用启动类加载器 BootstrapClassLoader 加载
                        c = findBootstrapClassOrNull(name);
                    }
                } catch (ClassNotFoundException e) {
                   //抛出异常说明父类加载器无法完成加载请求
                }

                if (c == null) {
                    long t1 = System.nanoTime();
                    //自己尝试加载
                    c = findClass(name);

                    // this is the defining class loader; record the stats
                    sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
                    sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
                    sun.misc.PerfCounter.getFindClasses().increment();
                }
            }
            if (resolve) {
                resolveClass(c);
            }
            return c;
        }
    }

双亲委派模型的好处

双亲委派模型保证了Java程序的稳定运行,可以避免类的重复加载(JVM 区分不同类的方式不仅仅根据类名,相同的类文件被不同的类加载器加载产生的是两个不同的类),也保证了 Java 的核心 API 不被篡改。如果没有使用双亲委派模型,而是每个类加载器加载自己的话就会出现一些问题,比如我们编写一个称为 java.lang.Object 类的话,那么程序运行的时候,系统就会出现多个不同的 Object 类。

如果我们不想用双亲委派模型怎么办?

为了避免双亲委托机制,我们可以自己定义一个类加载器,然后重载 loadClass() 即可。

自定义类加载器

除了 BootstrapClassLoader 其他类加载器均由 Java 实现且全部继承自java.lang.ClassLoader。如果我们要自定义自己的类加载器,很明显需要继承 ClassLoader

推荐阅读

参考

堆的划分,为什么要设置两个Survivor区?新生代 Survivor 空间不足怎么办?年轻代的几个参数?
一个对象从创建到销毁都是怎么在这些部分里存活和转移的?

Java中new对象干的几件事?

Java四种引用状态?

类加载的过程?类加载基于的机制?为什么要双亲委派?为什么需要破坏双亲委派?自己写个String能加载吗?类初始化时机?

对象的创建的过程?

GC算法与垃圾回收!为什么需要垃圾回收以及什么时候GC?GC涉及到的内存部分?对象存活判断的几种方式?

说一下你了解的几个垃圾收集器

JVM初始化步骤

JVM调优(这个比较少)

Java 虚拟机栈会出现的两种异常?

原文地址:https://www.cnblogs.com/xiehang/p/11623905.html

时间: 2024-11-15 00:43:12

JVM 学习总结的相关文章

JVM学习(4)——全面总结Java的GC算法和回收机制---转载自http://www.cnblogs.com/kubixuesheng/p/5208647.html

俗话说,自己写的代码,6个月后也是别人的代码--复习!复习!复习!涉及到的知识点总结如下: 一些JVM的跟踪参数的设置 Java堆的分配参数 -Xmx 和 –Xms 应该保持一个什么关系,可以让系统的性能尽可能的好呢?是不是虚拟机内存越大越好? Java 7之前和Java 8的堆内存结构 Java栈的分配参数 GC算法思想介绍 –GC ROOT可达性算法 –标记清除 –标记压缩 –复制算法 可触及性含义和在Java中的体现 finalize方法理解 Java的强引用,软引用,弱引用,虚引用 GC

JVM学习笔记(一)------基本结构

从Java平台的逻辑结构上来看,我们能够从下图来了解JVM: 从上图能清晰看到Java平台包括的各个逻辑模块,也能了解到JDK与JRE的差别 对于JVM自身的物理结构,我们能够从下图俯视一下: 对于JVM的学习,在我看来这么几个部分最重要: Java代码编译和运行的整个过程 JVM内存管理及垃圾回收机制 以下将这两个部分进行具体学习 JVM学习笔记(一)------基本结构,布布扣,bubuko.com

JVM 学习笔记

JVM  ----Java  Virtual Machine   (熟称:JAVA虚拟机),JVM 在执行JAVA程序的过程中将内容划分为若干个区域,其有各自的用途和管理机制.如下图: 1.  程序计算器(Program Counter Register)  --  是当前线程所执行字节码的行号指示器,通过改变其值来实现执行不同的代码指令.内存占用小,线程私有,支持多线程处理(多线程时,每个线程有一个独立程序计算器,已达到各自互不影响), 也正是由于这些特点,该区域是JVM规范中唯一没有规定任何

java之jvm学习笔记十三(jvm基本结构)

java之jvm学习笔记十三(jvm基本结构) 这一节,主要来学习jvm的基本结构,也就是概述.说是概述,内容很多,而且概念量也很大,不过关于概念方面,你不用担心,我完全有信心,让概念在你的脑子里变成图形,所以只要你有耐心,仔细,认真,并发挥你的想象力,这一章之后你会充满自信.当然,不是说看完本章,就对jvm了解了,jvm要学习的知识实在是非常的多.在你看完本节之后,后续我们还会来学jvm的细节,但是如果你在学习完本节的前提下去学习,再学习其他jvm的细节会事半功倍. 为了让你每一个知识点都有迹

java之jvm学习笔记六-十二(实践写自己的安全管理器)(jar包的代码认证和签名) (实践对jar包的代码签名) (策略文件)(策略和保护域) (访问控制器) (访问控制器的栈校验机制) (jvm基本结构)

java之jvm学习笔记六(实践写自己的安全管理器) 安全管理器SecurityManager里设计的内容实在是非常的庞大,它的核心方法就是checkPerssiom这个方法里又调用 AccessController的checkPerssiom方法,访问控制器AccessController的栈检查机制又遍历整个 PerssiomCollection来判断具体拥有什么权限一旦发现栈中一个权限不允许的时候抛出异常否则简单的返回,这个过程实际上比我的描述要复杂 得多,这里我只是简单的一句带过,因为这

java之jvm学习笔记五(实践写自己的类装载器)

java之jvm学习笔记五(实践写自己的类装载器) 课程源码:http://download.csdn.net/detail/yfqnihao/4866501 前面第三和第四节我们一直在强调一句话,类装载器和安全管理器是可以被动态扩展的,或者说,他们是可以由用户自己定制的,今天我们就是动手试试,怎么做这部分的实践,当然,在阅读本篇之前,至少要阅读过笔记三. 下面我们先来动态扩展一个类装载器,当然这只是一个比较小的demo,旨在让大家有个比较形象的概念. 第一步,首先定义自己的类装载器,从Clas

深入JVM学习心得

深入JVM学习心得 前言 相信很多人和我一样长期使用java编程,却 很少关注过JVM底层实现,这很大程度上是因为JVM设计的很精巧,因此平时项目也很少遇到涉及JVM的问题.但是一方面出于对java底层技术的好奇, 另一方面某些高并发,要对特定场景优化或者是排错的问题也迫切需要对JVM实现的了解,于是楼主这两天仔细拜读了<inside JVM>这本关于JVM的经典著作,对JVM的一些实现细节有了较为清楚的认识,将一些学习的体会和收获记录下来与各位有相同困扰的朋友分享. 本文将从JVM的几大核心

JVM学习笔记-内存管理

第一章 内存分配 1. 内存区域. 方法区和堆(线程共享),程序计数器 , VM栈 和 本地方法栈(线程隔离). 1) java虚拟机栈:线程私有.描述的是java方法执行的内存模型:栈帧,用户存储 局部变量表,操作数栈,动态链接,方法出口等信息. 局部变量表在编译时即可完全确定!如果线程请求的栈深度大于 规定的深度,StackOverflowError. 2) 本地方法栈,类似. 3)堆:垃圾收集器管理的主要区域.线程共享. 4)方法区: 各个线程共享.存储:加载的类信息,常量,静态变量,即时

Java虚拟机JVM学习04 类的初始化

Java虚拟机JVM学习04 类的初始化 类的初始化 在初始化阶段,Java虚拟机执行类的初始化语句,为类的静态变量赋予初始值. 在程序中,静态变量的初始化有两种途径: 1.在静态变量的声明处进行初始化: 2.在静态代码块中进行初始化. 没有经过显式初始化的静态变量将原有的值. 静态变量的声明语句,以及静态代码块都被看做类的初始化语句,Java虚拟机会按照初始化语句在类文件中的先后顺序来依次执行它们. 类的初始化步骤 1.假如这个类还没有被加载和连接,那就先进行加载和连接. 2.假如类存在直接的

Java虚拟机JVM学习05 类加载器的父委托机制

Java虚拟机JVM学习05 类加载器的父委托机制 类加载器 类加载器用来把类加载到Java虚拟机中. 类加载器的类型 有两种类型的类加载器: 1.JVM自带的加载器: 根类加载器(Bootstrap) 扩展类加载器(Extension) 系统类加载器(System) 2.用户自定义的类加载器: java.lang.ClassLoader的子类,用户可以定制类的加载方式. JVM自带的加载器 Java虚拟机自带了以下几种加载器. 1.根(Bootstrap)类加载器: 该加载器没有父加载器. 它