LibreOJ6279. 数列分块入门 3 题解

题目链接:https://loj.ac/problem/6279

题目描述

给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,询问区间内小于某个值 \(x\) 的前驱(比其小的最大元素)。

输入格式

第一行输入一个数字 \(n\)。
第二行输入 \(n\) 个数字,第 \(i\) 个数字为 \(a_i\),以空格隔开。
接下来输入 \(n\) 行询问,每行输入四个数字 \(opt\)、\(l\)、\(r\)、\(c\),以空格隔开。
若 \(opt=0\),表示将位于\([l,r]\) 之间的数字都加 \(c\)。
若 \(opt=1\),表示询问 \([l,r]\) 中 \(c\) 的前驱的值(不存在则输出 \(-1\))。

输出格式

对于每次询问,输出一行一个数字表示答案。

样例输入

4
1 2 2 3
0 1 3 1
1 1 4 4
0 1 2 2
1 1 2 4

样例输出

3
-1

数据范围与提示

对于 \(100%\) 的数据,\(1 \le n \le 100000, -2^{31} \le others,ans \le 2^{31}-1\)。

解题思路

本题和《数列分块入门 2》思路类似,同样是开一个数组 \(b\) 并块内排序,同样是二分找 \(\le c\) 的最大值。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 100010;
int n, m, a[maxn], b[maxn], p[maxn], v[400], op, l, r, c;
inline void chk_max(int &a, int b) {
    if (b == -1) return;
    if (a == -1 || a < b) a = b;
}
void update_part(int pid) {
    int i1 = (pid-1)*m+1, i2 = min(pid*m+1, n+1);   // 注意边界条件
    for (int i = i1; i < i2; i ++)
        b[i] = a[i];
    sort(b+i1, b+i2);
}
void add(int l, int r, int c) {
    if (p[l] == p[r]) { // 说明在同一个分块,直接更新
        for (int i = l; i <= r; i ++) a[i] += c;
        update_part(p[l]);
        return;
    }
    if (l % m != 1) {    // 说明l不是分块p[l]的第一个元素
        for (int i = l; p[i]==p[l]; i ++) {
            a[i] += c;
        }
        update_part(p[l]);
    }
    else v[p[l]] += c;
    if (r % m != 0) { // 说明r不是分块p[r]的最后一个元素
        for (int i = r; p[i]==p[r]; i --)
            a[i] += c;
        update_part(p[r]);
    }
    else v[p[r]] += c;
    for (int i = p[l]+1; i < p[r]; i ++)
        v[i] += c;
}
int pre_part(int pid, int c) {
    int i1 = (pid-1)*m+1, i2 = min(pid*m+1, n+1);
    int id = lower_bound(b+i1, b+i2, c-v[pid]) - (b+i1);
    if (id == 0) return -1;
    return b[i1+id-1]+v[pid];
}
int get_pre(int l, int r, int c) {
    int res = -1;
    if (p[l] == p[r]) { // 说明在同一个分块,直接更新
        for (int i = l; i <= r; i ++)
            if (a[i]+v[p[i]] < c)
                chk_max(res, a[i]+v[p[i]]);
        return res;
    }
    if (l % m != 1) {    // 说明l不是分块p[l]的第一个元素
        for (int i = l; p[i]==p[l]; i ++)
            if (a[i]+v[p[i]] < c)
                chk_max(res, a[i]+v[p[i]]);
    }
    else chk_max(res, pre_part(p[l], c));
    if (r % m != 0) { // 说明r不是分块p[r]的最后一个元素
        for (int i = r; p[i]==p[r]; i --)
            if (a[i]+v[p[i]] < c)
                chk_max(res, a[i]+v[p[i]]);
    }
    else chk_max(res, pre_part(p[r], c));
    for (int i = p[l]+1; i < p[r]; i ++)
        chk_max(res, pre_part(i, c));
    return res;
}
int main() {
    scanf("%d", &n);
    m = sqrt(n);
    for (int i = 1; i <= n; i ++) p[i] = (i-1)/m + 1;
    for (int i = 1; i <= n; i ++) scanf("%d", &a[i]);
    for (int i = 1; i <= n; i += m) update_part(p[i]);  // 初始化
    for (int i = 0; i < n; i ++) {
        scanf("%d%d%d%d", &op, &l, &r, &c);
        if (op == 0) add(l, r, c);
        else printf("%d\n", get_pre(l, r, c));
    }
    return 0;
}

原文地址:https://www.cnblogs.com/quanjun/p/12112866.html

时间: 2024-10-09 09:58:06

LibreOJ6279. 数列分块入门 3 题解的相关文章

LibreOJ 6278. 数列分块入门 2 题解

题目链接:https://loj.ac/problem/6278 题目描述 给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,询问区间内小于某个值 \(x\) 的元素个数. 输入格式 第一行输入一个数字 \(n\). 第二行输入 \(n\) 个数字,第 \(i\) 个数字为 \(a_i\),以空格隔开. 接下来输入 \(n\) 行询问,每行输入四个数字 \(opt\).\(l\).\(r\).\(c\),以空格隔开. 若 \(opt=0\),表示将位于 \([l,r]

loj 6278 6279 数列分块入门 2 3

参考:「分块」数列分块入门1 – 9 by hzwer 2 Description 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,询问区间内小于某个值\(x\)的元素个数. 思路 每个块内保持升序排列. 则块外暴力统计,块内二分查找分界点. 一些注意点,如: 要记录下标: 块外暴力修改完之后需要再排序: 在块内二分查找的值是\(c-tag[i]\)而非\(c\). Code #include <bits/stdc++.h> #define maxn 50010 #def

loj 6277 6280 数列分块入门 1 4

参考:「分块」数列分块入门1 – 9 by hzwer 1 Description 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,单点查值. 思路 用\(tag\)记录每个块整体的增量. Code #include <bits/stdc++.h> #define maxn 50010 #define F(i, a, b) for (int i = (a); i < (b); ++i) #define F2(i, a, b) for (int i = (a); i

LOJ#6284. 数列分块入门 8

#6284. 数列分块入门 8 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计讨论 1 测试数据 题目描述 给出一个长为 nnn 的数列,以及 nnn 个操作,操作涉及区间询问等于一个数 ccc 的元素,并将这个区间的所有元素改为 ccc. 输入格式 第一行输入一个数字 nnn. 第二行输入 nnn 个数字,第 i 个数字为 aia_ia?i??,以空格隔开. 接下来输入 nnn 行询问,每行输入三个数字 ll

LOJ6277~6285 数列分块入门

Portals 分块需注意的问题 数组大小应为\(N+\sqrt N\),因为最后一个块可能会超出\(N\)的范围.改成记录\(blk,fr,to\)就不用担心这个了 当操作的区间在一个块内时,要特判成暴力修改. 要清楚什么时候应该+tag[t] 最后一个块是越界的,注意是否有影响 数列分块入门 1 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,单点查值. //数列分块入门 1 #include <cstdio> #include <cmath> inlin

数列分块入门

分块是 莫队 算法的前置知识,也是一种十分 暴力 的数据结构. 分块的核心思想是把要操作的数列 \(a_i\) 分成若干长度相等的"块":修改/查询时对于整一块都在指定区间 \([L,R]\) 内的块整体修改/查询,对于只有块的一部分在指定区间内的暴力修改/查询. 由于不需要操作/查询具有 区间加法 等性质,分块比线段树.树状数组.ST表等数据结构具有更加灵活的应用. 先来看一道例题 数列分块入门 4,简而言之,就是要求实现区间加法&区间查询:线段树可以很轻松地实现这两个操作,

数列分块入门5 解题报告

占坑QAQ 数列分块系列目录 数列分块入门1 数列分块入门2 数列分块入门3 数列分块入门4 数列分块入门5 <- 数列分块入门6 数列分块入门7 数列分块入门8 数列分块入门9 蒲公英 公主的朋友 原文地址:https://www.cnblogs.com/louhancheng/p/10051160.html

数列分块入门2 解题报告

题意概括 区间加法,区间询问小于一个数的个数. 正题 对于每个块,除原数组之外用一个vector来有序地存储所有数.当区间加时,对于每个完整块维护共同加数,对于不完整的块直接暴力加上再重新排序.当询问时,对于每个完整块在vector中二分,对于不完整的,直接暴力计数. 代码 #include<cstdio> #include<vector> #include<algorithm> #include<cmath> using namespace std; #d

数列分块入门1-9 LibreOJ

数列分块入门1-9 LibreOJ 我也不知道为什么一个大二的ACM选手没学分块. 我怎么记得大一的时候,学长教给我的分块就只有 block 和 num 两个变量来着...好吧,应该是我没认真学.正好前两天朋友给学弟开课,乘机去蹭了一节课.然后...我还是不会哇,菜的一逼塌糊涂. 还是卿学姐好哇,多听几遍,睡得贼香. 分块原理 分块嘛,其实就是优雅的暴力,和莫队(不会)有点异曲同工的赶脚.通过将数组分成小块以降低复杂度. 通常情况下: 每个块的大小(block)为 \(\sqrt{n}\) 块数