pandas 生成并排放置的条形图和箱线图

1、代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 生成数据,创建 DataFrame
np.random.seed(27)
data = np.random.rand(7, 3)
index = [‘Customer ‘ + str(i) for i in range(1, 8)]
Metrics = [‘Metric ‘ + str(i) for i in range(1, 4)]
df = pd.DataFrame(data, index=index, columns=pd.Index(Metrics, name=‘Metrics‘))

# 设置图形属性及布局
plt.style.use(‘ggplot‘)
fig = plt.figure(‘百里希文‘)
axes = fig.subplots(nrows=1, ncols=2)
ax1, ax2 = axes.ravel()

# 在第 1 个坐标系创建竖直条形图
df.plot(kind=‘bar‘, ax=ax1, alpha=0.7, title=‘Bar Plot‘ )
plt.setp(ax1.get_xticklabels(), rotation=45, fontsize=10)
plt.setp(ax1.get_yticklabels(), rotation=0, fontsize=10)
ax1.set_xlabel(‘Customer‘), ax1.set_ylabel(‘Value‘)

# 在第 2 个坐标系创建箱线图
colors = dict(boxes=‘DarkBlue‘, whiskers=‘Gray‘, medians=‘r‘, caps=‘k‘)
df.plot(kind=‘box‘, ax=ax2, color=colors, sym=‘r.‘, title=‘Box Plot‘)
plt.setp(ax2.get_xticklabels(), rotation=45, fontsize=11)
plt.setp(ax2.get_yticklabels(), rotation=0, fontsize=11)
ax2.set_xlabel(‘Metric‘), ax2.set_ylabel(‘Value‘)

# 调整图形显示位置
fig.subplots_adjust(left=0.05, bottom=0.2, right=0.95,
                    top=0.95, hspace=0.1, wspace=0.1) 

plt.show()

2 图形如下

。。。

原文地址:https://www.cnblogs.com/shanger/p/12046415.html

时间: 2024-11-08 23:59:51

pandas 生成并排放置的条形图和箱线图的相关文章

pyhton中matplotlib箱线图的绘制(matplotlib双轴图、箱线图、散点图以及相关系数矩阵图))

//2019.07.23 1.箱形图,又称为盒式图,一般可以很好地反映出数据分布的特征,也可以进行多项数据之间分布特征的比较,它主要包含五个基础数据:中位数,两个上下分位数以及上下边缘线数据 其中的一些参数具体含义及其计算过程如下: 2.双轴图的绘制代码:import numpy as npimport matplotlib.pyplot as pltimport pandas as pdplt.rcParams["font.sans-serif"]=["SimHei&quo

Matlab boxplot for Multiple Groups(多组数据的箱线图)

在画之前首先介绍一下Matlab boxplot,下面这段说明内容来自http://www.plob.org/2012/06/10/2153.html 由于matlab具有强大的计算功能,用其统计数据功能优点显而易见,这里分享使用matlab中的boxplot的一些技巧,供大家参考. Matlab boxplot命令 格式如下 boxplot(X):产生矩阵X的每一列的盒图和“须”图,“须”是从盒的尾部延伸出来,并表示盒外数据长度的线,如果“须”的外面没有数据,则在“须”的底部有一个点. www

matplotlib学习日记(六)-箱线图

(一)箱线图---由一个箱体和一对箱须组成,箱体是由第一个四分位数,中位数和第三四分位数组成,箱须末端之外的数值是离散群,主要应用在一系列测量和观测数据的比较场景 import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np mpl.rcParams["font.sans-serif"] = ["FangSong"] mpl.rcParams["axes.unicod

【数据分析&数据挖掘】异常值的判断与去除——3σ & 箱线图分析

1 import pandas as pd 2 3 # 异常值 ——远离正常值范围的错误值 4 # 异常值 ——删掉 5 6 # 异常值判断 ——3σ 箱线图分析 7 8 # 3σ 接住标准正态部分得到的规律——99.73%都在(μ-3α,μ+3α)之间,超过这个范围的数据认为是异常的 9 10 def three_sigma(data): 11 """ 12 进行3sigma异常值剔除 13 :param data: 原数据——series 14 :return: bool

扩增子图表解读1箱线图:Alpha多样性

箱线图 箱形图(Box-plot)又称为盒须图.盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图.因形状如箱子而得名.在宏基因组领域,常用于展示样品组中各样品Alpha多样性的分布 第一种情况,最大或最小值没有超过1.5倍箱体范围 第二种情况,最大或最小值超过1.5倍箱体范围,外位延长线外,即异常值(outliers) Alpha多样性 知识背景:Alpha多样性计算方法 常见的丰度估计方法有Shannon, Chao1和Observed OTU和PD whole tree等.我最喜欢

扩增子统计绘图1箱线图:Alpha多样性

绘制Alpha多样性线箱图 绘图和统计全部为R语言,建议复制代码,在Rstuido中运行,并设置工作目录为存储之前分析结果文件的result目录 # 运行前,请在Rstudio中菜单栏选择“Session - Set work directory -- Choose directory”,弹窗选择之前分析目录中的result文件夹 # 安装相关软件包,如果末安装改为TRUE运行即可安装 if (FALSE){ source("https://bioconductor.org/biocLite.R

python3绘图示例4(基于matplotlib:箱线图、散点图等)

#!/usr/bin/env python# -*- coding:utf-8 -*- from matplotlib.pyplot import * x=[1,2,3,4]y=[5,4,3,2] # 创建新图标figure() # 对角线图 第1个参数:2行 第2个参数:3列的网格 第3个参数:图形在网格的位置subplot(231)plot(x,y) # 垂直柱状图subplot(232)bar(x,y) # 水平柱状图subplot(233)barh(x,y) # 堆叠柱状图-颜色间隔su

【数据分析&数据挖掘】2000-2017年各个产业生产总值箱线图

1 import matplotlib.pyplot as plt 2 import numpy as np 3 4 5 # 构建数据 6 def build_data(): 7 res = np.load("./国民经济核算季度数据.npz", allow_pickle=True) 8 columns = res["columns"] 9 values = res["values"] 10 return columns, values 11 1

Python统计分析可视化库seaborn(相关性图,变量分布图,箱线图等等)

Visualization of seaborn  seaborn[1]是一个建立在matplot之上,可用于制作丰富和非常具有吸引力统计图形的Python库.Seaborn库旨在将可视化作为探索和理解数据的核心部分,有助于帮人们更近距离了解所研究的数据集.无论是在kaggle官网各项算法比赛中,还是互联网公司的实际业务数据挖掘场景中,都有它的身影.    在本次介绍的这个项目中,我们将利用seaborn库对数据集进行分析,分别展示不同类型的统计图形. 首先,我们将导入可视化所需的所有必要包,我