Tensorflow细节-P80-深度神经网络

1、本节多为复习内容,从以下图片可见一般:


2、学会使用
from numpy.random import RandomState
然后

rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[(x1 + x2) + rdm.rand() / 10.0-0.05] for(x1, x2) in X]

进行赋值的时候就可以不变了

import tensorflow as tf
from numpy.random import RandomState

batch_size=8
with tf.name_scope("inputs"):
    xs = tf.placeholder(tf.float32, [None, 2], name="xs")
    ys = tf.placeholder(tf.float32, [None, 1], name="ys")

with tf.variable_scope("get_variable"):
    w1 = tf.get_variable("w1", [2, 1], tf.float32, tf.truncated_normal_initializer(seed=1))
    b1 = tf.get_variable("b1", [1], tf.float32, tf.zeros_initializer())

with tf.name_scope("op"):
    y = tf.matmul(xs, w1) + b1
with tf.name_scope("loss_op"):
    loss = tf.reduce_mean(tf.where(tf.greater(ys, y), (ys-y)*1, (y-ys)*10))
    tf.summary.scalar("loss", loss)
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)

rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[(x1 + x2) + rdm.rand() / 10.0-0.05] for(x1, x2) in X]

merged = tf.summary.merge_all()
with tf.Session() as sess:
    writer = tf.summary.FileWriter("path/", graph=tf.get_default_graph())
    tf.global_variables_initializer().run()
    for i in range (5000):
        start = i*batch_size % dataset_size
        end = min((i+1)*batch_size% dataset_size, dataset_size)
        train_op = sess.run(train_step, feed_dict={xs: X, ys: Y})
        if i % 100 == 0:
            result, losses = sess.run([merged, loss], feed_dict={xs: X, ys: Y})
            print("After %d , loss is %g" % (i, losses))
            writer.add_summary(result, i)
writer.close()

原文地址:https://www.cnblogs.com/liuboblog/p/11616998.html

时间: 2024-11-09 09:56:10

Tensorflow细节-P80-深度神经网络的相关文章

TensorFlow实现基于深度学习的图像补全

目录 ■ 简介 ■ 第一步:将图像理解为一个概率分布的样本 你是怎样补全缺失信息的呢? 但是怎样着手统计呢?这些都是图像啊. 那么我们怎样补全图像?  ■ 第二步:快速生成假图像 在未知概率分布情况下,学习生成新样本 [ML-Heavy] 生成对抗网络(Generative Adversarial Net, GAN) 的架构 使用G(z)生成伪图像 [ML-Heavy] 训练DCGAN 现有的GAN和DCGAN实现 [ML-Heavy] 在Tensorflow上构建DCGANs 在图片集上跑DC

第十一章——训练深度神经网络

上一章我们训练了一个浅层神经网络,只要两个隐层.但如果处理复杂的问题,例如从高分辨率图像中识别上百种类的物品,这就需要训练一个深度DNN.也行包含十层,每层上百个神经元,几十万个连接.这绝不是闹着玩的: 首先,需要面对梯度消失(或者相对的梯度爆炸)问题,这会导致浅层很难被训练. 其次,这么大一个网络,训练速度很慢. 最后,一个包含上百万参数的模型,存在很大过拟合的风险. 11.1 梯度消失(爆炸)问题 反向传播算法会计算损失函数关于每一个参数的偏导数,然后使用梯度下降更新参数.不幸的是,反向传播

如何利用Python和深度神经网络锁定即将流失的客户?业绩过十万!

烦恼 作为一名数据分析师,你来到这家跨国银行工作已经半年了. 今天上午,老板把你叫到办公室,面色凝重. 你心里直打鼓,以为自己捅了什么篓子.幸好老板的话让你很快打消了顾虑. 客户主要分布在法国.德国和西班牙. 你手里掌握的信息,包括他们的年龄.性别.信用.办卡信息等.客户是否已流失的信息在最后一列(Exited). 请选择左侧的Python 3.6版本下载安装. 其次是新建文件夹,起名为demo-customer-churn-ann,并且从这个链接下载数据,放到该文件夹下. 点击界面右上方的Ne

深度神经网络可视化工具集锦

深度神经网络可视化工具集锦 雷锋网按:原文作者zhwhong,载于作者的个人博客,雷锋网(公众号:雷锋网)经授权发布.  TensorBoard:TensorFlow集成可视化工具 GitHub官方项目:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tensorboard TensorBoard 涉及到的运算,通常是在训练庞大的深度神经网络中出现的复杂而又难以理解的运算. 为了更方便 TensorFlow 程序的理

从图像到知识:深度神经网络实现图像理解的原理解析

摘要:本文将详细解析深度神经网络识别图形图像的基本原理.针对卷积神经网络,本文将详细探讨网络中每一层在图像识别中的原理和作用,例如卷积层(convolutional layer),采样层(pooling layer),全连接层(hidden layer),输出层(softmax output layer).针对递归神经网络,本文将解释它在在序列数据上表现出的强大能力.针对通用的深度神经网络模型,本文也将详细探讨网络的前馈和学习过程.卷积神经网络和递归神经网络的结合形成的深度学习模型甚至可以自动生

深度学习实践系列(2)- 搭建notMNIST的深度神经网络

如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) 每层之间每个节点都是完全连接的,其中包含权重(W).每层都存在一个偏移值(b). 每一层节点的计算方式如下: 其中g()代表激活函数,o()代表softmax输出函数. 使用Flow Graph的方式来表达如何正向推导神经网络,可以表达如下: x: 输入值 a(x):表示每个隐藏层的pre-acti

TensorFlow与主流深度学习框架对比

引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年11月开源的机器学习及深度学习框架. TensorFlow在2015年年底一出现就受到了极大的关注,在一个月内获得了GitHub上超过一万颗星的关注,目前在所有的机器学习.深度学习项目中排名第一,甚至在所有的Python项目中也排名第一.本文将带我们简单了解下TensorFlow,并与其他主流深度学

深度神经网络在量化交易里的应用 之二 -- 用深度网络(LSTM)预测5日收盘价格

    距离上一篇文章,正好两个星期. 这边文章9月15日 16:30 开始写. 可能几个小时后就写完了.用一句粗俗的话说, "当你怀孕的时候,别人都知道你怀孕了, 但不知道你被日了多少回 " ,纪念这两周的熬夜,熬夜.  因为某些原因,文章发布的有点仓促,本来应该再整理实验和代码比较合适.文章都是两个主要作用: 对自己的工作总结, 方便自己回顾和分享给有兴趣的朋友. 不说废话了, 进入正题. 本次的课题很简单, 深度神经网络(AI)来预测5日和22日后的走势. (22日尚未整理, 不

深度神经网络识别图形图像的基本原理(转)

摘要:本文将详细解析深度神经网络识别图形图像的基本原理.针对卷积神经网络,本文将详细探讨网络中每一层在图像识别中的原理和作用,例如卷积层(convolutional layer),采样层(pooling layer),全连接层(hidden layer),输出层(softmax output layer).针对递归神经网络,本文将解释它在在序列数据上表现出的强大能力.针对通用的深度神经网络模型,本文也将详细探讨网络的前馈和学习过程.卷积神经网络和递归神经网络的结合形成的深度学习模型甚至可以自动生