POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)

http://poj.org/problem?id=1273

Description

Every time it rains on Farmer John‘s fields, a pond forms over Bessie‘s favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie‘s clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

EK算法:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
int map[201][201],n,m,v[201],pre[201];
int bfs(int s,int t)
{
    queue<int>q;
    q.push(s);
    memset(pre,-1,sizeof(pre));
    memset(v,0,sizeof(v));
    pre[s]=s;
    v[s]=1;
    while(!q.empty())
    {
        int w=q.front();
        q.pop();
        for(int i=1; i<=n; i++)
        {
            if(map[w][i]&&!v[i])
            {
                pre[i]=w;
                v[i]=1;
                if(i==t)
                {
                    return 1;
                }
                q.push(i);
            }
        }
    }
    return 0;
}
void EK(int s,int t)
{
    int ans=0,minx;
    while(bfs(s,t)==1)
    {
        minx=inf;
        for(int i=t; i!=s; i=pre[i])
        {
            minx=min(minx,map[pre[i]][i]);
        }
        for(int i=t; i!=s; i=pre[i])
        {
            map[pre[i]][i]-=minx;
            map[i][pre[i]]+=minx;
        }
        ans+=minx;
    }
    printf("%d\n",ans);
    return ;
}
int main()
{
    int xx,yy,zz;
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        memset(map,0,sizeof(map));
        while(m--)
        {
            scanf("%d%d%d",&xx,&yy,&zz);
            map[xx][yy]+=zz;
        }
        EK(1,n);
    }
    return 0;
}

dinic算法:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
int map[201][201],dis[201];
int m,n;
int bfs(int s,int t)
{
    memset(dis,-1,sizeof(dis));
    dis[s]=0;
    queue<int>q;
    q.push(s);
    while(!q.empty())
    {
        int y=q.front();
        q.pop();
        for(int i=1; i<=n; i++)
        {
            if(dis[i]==-1&&map[y][i])
            {
                dis[i]=dis[y]+1;
                q.push(i);
            }
        }
    }
    if(dis[t]>0) return 1;
    return 0;
}
int dinic(int s,int maxt)
{
    if(s==n) return maxt;
    int a,sum=maxt;
    for(int i=1; i<=n&&sum; i++)
    {
        if(dis[i]==dis[s]+1&&map[s][i]>0)
        {
            a=dinic(i,min(sum,map[s][i]));
            map[s][i]-=a;
            map[i][s]+=a;
            sum-=a;
        }
    }
    return maxt-sum;
}
int main()
{
    int x,y,z,ans;
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        ans=0;
        memset(map,0,sizeof(map));
        while(m--)
        {
            scanf("%d%d%d",&x,&y,&z);
            map[x][y]+=z;
        }
        while(bfs(1,n)==1)
        {
            ans+=dinic(1,inf);
        }
        printf("%d\n",ans);
    }
    return 0;
}
				
时间: 2025-01-16 00:42:58

POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)的相关文章

poj-1273 Drainage Ditches(最大流基础题)

题目链接: Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67475   Accepted: 26075 Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is cover

poj 1273 Drainage Ditches (最大流入门)

1 /****************************************************************** 2 题目: Drainage Ditches(POJ 1273) 3 链接: http://poj.org/problem?id=1273 4 题意: 现在有m个池塘(从1到m开始编号,1为源点,m为汇点),及n条 5 水渠,给出这n条水渠所连接的池塘和所能流过的水量,求水 6 渠中所能流过的水的最大容量.水流是单向的. 7 算法: 最大流之增广路(入门)

poj 1273 Drainage Ditches 最大流入门题

题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has

POJ1273 Drainage Ditches 最大流模板题(dinic)

最大流的模板题 给出边数M,顶点数N 以及每条边的容量 求1到N的最大流 注意可以有重边 邻接矩阵模板: #include<iostream> #include<cstdio> #include<cstring> #define maxx 0x3f3f3f #define M 205 using namespace std; int arc[M][M]; //弧的剩余流量 int level[M]; int n; int min(int a,int b) { retur

poj 1273 Drainage Ditches(最大流入门)

题意:n个池塘,m条水渠,求从第一个池塘到第m个池塘能运送的最大流量: 思路:裸最大流dicnic算法.建分层图并不断找增广路,直到找不到增广路即为最大流. 邻接表实现: #include <cstdio> #include <cstring> #include <queue> using namespace std; #define MAXN 210 #define INF 0x3f3f3f3f struct Edge { int st, ed; int c; int

poj1273 Drainage Ditches(裸最大流)

Drainage Ditches Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Drainage Ditches Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Description Every time it rains on Farmer Joh

Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... 1 #include<cstdio> 2 #include<vector> 3 #include<queue> 4 #include<cstring> 5 #include<set> 6 #include<algorithm> 7 #define CLR(a,b) memset((a),(b),si

POJ 1273 Drainage Ditches(我的EK算法模板)

题意:给你n条边,目标位置t:接下来是每条边,包括起点,终点,容量: 感想:第一道最大流的代码,这道题是我更深地理解了Ek算法,不过这道题有个超坑的情况,那就是出现重边的情况==! 思路:EK算法 AC代码: #include<stdio.h> #include<string.h> #include<algorithm> #include<queue> using namespace std; #define INF 100000000 #define N

POJ 1273 Drainage Ditches 最大流

很裸的最大流问题,不过注意会有重边,o(╯□╰)o,被阴了WA了一发 还有就是要用long long #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <climits> #include <string> #include <iostream> #include <map> #include