dp-(LCS 基因匹配)

Human Gene Functions

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 19885   Accepted: 11100

Description

It is well known that a human gene can be considered as a sequence, consisting of four nucleotides, which are simply denoted by four letters, A, C, G, and T. Biologists have been interested in identifying human genes and determining their functions, because these can be used to diagnose human diseases and to design new drugs for them.

A human gene can be identified through a series of
time-consuming biological experiments, often with the help of computer
programs. Once a sequence of a gene is obtained, the next job is to
determine its function.

One of the methods for biologists to use in determining the function
of a new gene sequence that they have just identified is to search a
database with the new gene as a query. The database to be searched
stores many gene sequences and their functions – many researchers have
been submitting their genes and functions to the database and the
database is freely accessible through the Internet.

A database search will return a list of gene sequences from the database that are similar to the query gene.

Biologists assume that sequence similarity often implies
functional similarity. So, the function of the new gene might be
one of the functions that the genes from the list have. To exactly
determine which one is the right one another series of biological
experiments will be needed.

Your job is to make a program that compares two genes and determines
their similarity as explained below. Your program may be used as a part
of the database search if you can provide an efficient one.

Given two genes AGTGATG and GTTAG, how similar are they? One of the methods to measure the similarity

of two genes is called alignment. In an alignment, spaces are inserted, if necessary, in appropriate positions of

the genes to make them equally long and score the resulting genes according to a scoring matrix.

For example, one space is inserted into AGTGATG to result in
AGTGAT-G, and three spaces are inserted into GTTAG to result in
–GT--TAG. A space is denoted by a minus sign (-). The two genes
are now of equal

length. These two strings are aligned:

AGTGAT-G

-GT--TAG

In this alignment, there are four matches, namely, G in the second
position, T in the third, T in the sixth, and G in the eighth. Each
pair of aligned characters is assigned a score according to the
following scoring matrix.

denotes that a space-space match is not allowed. The score
of the alignment above is (-3)+5+5+(-2)+(-3)+5+(-3)+5=9.

Of course, many other alignments are possible. One is shown below (a
different number of spaces are inserted into different positions):

AGTGATG

-GTTA-G

This alignment gives a score of (-3)+5+5+(-2)+5+(-1) +5=14. So,
this one is better than the previous one. As a matter of fact, this one
is optimal since no other alignment can have a higher score. So, it is
said that the

similarity of the two genes is 14.

Input

The
input consists of T test cases. The number of test cases ) (T is
given in the first line of the input file. Each test case consists of
two lines: each line contains an integer, the length of a gene, followed
by a gene sequence. The length of each gene sequence is at least one
and does not exceed 100.

Output

The output should print the similarity of each test case, one per line.

Sample Input

2
7 AGTGATG
5 GTTAG
7 AGCTATT
9 AGCTTTAAA 

Sample Output

14
21 

题目大意 :

  给出一个基因匹配表格 , 里面有一些数值 。  设 dp[i][j] 为 s1 取第 i 个字符, s2 取第 j 个字符的最大值,决定dp[i][j] 最优的情况有 三种, 类似于最长公共子序列的三种情况。    1 . s1 取第 i 个字母, s2 取 ‘-‘ , temp1 = dp[i][j] = dp[i-1][j] + score[a[i]][‘-‘];  2 . s2 取第 j 个字母, s1 取 ‘-‘ , temp2 = dp[i][j] = dp[i][j-1] + score[‘-‘][b[j]];  3 . s1 取第 i 个字母 , s2 取第 j 个字母 , temp3 = dp[i][j] = dp[i-1][j-1] + score[a[i]][b[j]];

  则 dp[i][j] = max ( temp1, temp2, temp3 );

  还有初始化问题 :

    dp[0][0] = 0;    dp[i][0] = dp[i-1][0] + score[a[i]][‘-‘];    dp[0][j] = dp[0][j-1] + score[‘-‘][b[j]];

代码示例 :  
/*
 * Author:  ry
 * Created Time:  2017/9/3 8:00:06
 * File Name: 1.cpp
 */
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <time.h>
using namespace std;
const int mm = 1e6+5;
#define ll long long

ll t_cnt;
void t_st(){t_cnt=clock();}
void t_ot(){printf("you spent : %lldms\n", clock()-t_cnt);}
//开始t_st();
//结束t_ot();

int dp[150][150];
int score[‘T‘+1][‘T‘+1];

void intial () {
    score[‘A‘][‘A‘] = 5;
    score[‘C‘][‘C‘] = 5;
    score[‘G‘][‘G‘] = 5;
    score[‘T‘][‘T‘] = 5;
    score[‘A‘][‘C‘] = score[‘C‘][‘A‘] = -1;
    score[‘A‘][‘G‘] = score[‘G‘][‘A‘] = -2;
    score[‘A‘][‘T‘] = score[‘T‘][‘A‘] = -1;
    score[‘A‘][‘-‘] = score[‘-‘][‘A‘] = -3;
    score[‘C‘][‘G‘] = score[‘G‘][‘C‘] = -3;
    score[‘C‘][‘T‘] = score[‘T‘][‘C‘] = -2;
    score[‘C‘][‘-‘] = score[‘-‘][‘C‘] = -4;
    score[‘G‘][‘T‘] = score[‘T‘][‘G‘] = -2;
    score[‘G‘][‘-‘] = score[‘-‘][‘G‘] = -2;
    score[‘T‘][‘-‘] = score[‘-‘][‘T‘] = -1;
}

int MAX (int x, int y, int z) {
    int k = (x>y?x:y);
    return z>k?z:k;
}

int main() {
    int t;
    int len1, len2;
    char a[105], b[105];

    intial();
    cin >> t;
    getchar();
    while ( t-- ){
        memset (dp, 0, sizeof(dp));
        scanf("%d %s", &len1, a);
        scanf("%d %s", &len2, b);

        for (int i = len1; i > 0; i--)
            a[i] = a[i-1];
        for (int i = len2; i > 0; i--)
            b[i] = b[i-1];

        dp[0][0] = 0;
        for (int i = 1; i <= len1; i++)
            dp[i][0] = dp[i-1][0] + score[a[i]][‘-‘];
        for (int j = 1; j <= len2; j++)
            dp[0][j] = dp[0][j-1] + score[‘-‘][b[j]];

        for (int i = 1; i <= len1; i++)
            for (int j = 1; j <= len2; j++){
                int temp1 = dp[i-1][j] + score[a[i]][‘-‘];
                int temp2 = dp[i][j-1] + score[‘-‘][b[j]];
                int temp3 = dp[i-1][j-1] + score[a[i]][b[j]];
                dp[i][j] = MAX (temp1, temp2, temp3);
            }

        printf ("%d\n", dp[len1][len2]);
    }

    return 0;
}
时间: 2024-10-08 18:39:31

dp-(LCS 基因匹配)的相关文章

BZOJ 1264: [AHOI2006]基因匹配Match( LCS )

序列最大长度2w * 5 = 10w, O(n²)的LCS会T.. LCS 只有当a[i] == b[j]时, 才能更新答案, 我们可以记录n个数在第一个序列中出现的5个位置, 然后从左往右扫第二个序列时将第一个序列对应位置的值更新, 用树状数组维护. 时间复杂度O(nlogn) ------------------------------------------------------------------------------------------------- #include<bi

BZOJ 1264 基因匹配Match(LCS转化LIS)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1264 题意:给出两个数列,每个数列的长度为5n,其中1-n每个数字各出现5次.求两个数列的最长公共子列. 思 路:首先找出每个数字在第二个数列中出现的位置,对于第一个数列构造出一个新的数列,每个数用这个数在第二个数列中出现的5个位置代替.这样求最长上升子 列.注意的是,在求到每个数(这里指原第一个数列中的每个数)为止的LIS时,替换后的5个数字要先求大的..不清楚的看代码. int a

BZOJ-1264 :[AHOI2006]基因匹配Match(树状数组+DP)

1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 904  Solved: 578[Submit][Status][Discuss] Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球上只有4种),而更奇怪的是,组成DNA序列的每一种碱基在该序列中正好出现5次!这样如果一个DNA序列有N种不同的碱基构成

bzoj1264 基因匹配Match (lcs转lis lcs(nlogn))

基因匹配Match 内存限制:256 MiB 时间限制:1000 ms 标准输入输出 题目描述 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球上只有4种),而更奇怪的是,组成 DNA序列的每一种碱基在该序列中正好出现5次!这样如果一个DNA序列有N种不同的碱基构成,那么它的长度一定是5N. 卡卡醒来后向可可叙述了这个奇怪的梦,而可 可这些日子正在研究生物信息学中的基因匹配问题,于是他决定为这个奇怪星球上的生物写一个简单

poj1458——dp,lcs

poj1458——dp,lcs Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 40529   Accepted: 16351 Description A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence

hduoj1159 dp,lcs

hduoj1159  dp,lcs Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 25570    Accepted Submission(s): 11363 Problem Description A subsequence of a given sequence is the given seq

DP在字符匹配上的实现

在此保存下近段时间做的DP在字符匹配上的实现的题目 对于不同的字符串来说,2者只能不断将下标往后推移来实现匹配从而得到的最大匹配数 如 abcd 和 dcba 这个最大匹配数只能为1,因为两个d匹配后,在第一个字符串中是不能再拿前面的字符进行匹配的(当然你要是匹配a,b,c也是一样的道理) 对于每一道题目若想不断找到那个匹配成功的字符的话,我们需要一个函数不断递归找到前一个匹配成功的字符,这里引进一个T[N][N]的标志位来帮助我们判断何时进行递归 这里的题都是有关这个的形式 1.POJ 145

poj 2250 Compromise dp lcs 路径输出

点击打开链接题目链接 Compromise Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6520   Accepted: 2922   Special Judge Description In a few months the European Currency Union will become a reality. However, to join the club, the Maastricht criteria

UVA-1625-Color Length(DP LCS变形)

Color Length(UVA-1625)(DP LCS变形) 题目大意 输入两个长度分别为n,m(<5000)的颜色序列.要求按顺序合成同一个序列,即每次可以把一个序列开头的颜色放到新序列的尾部. https://odzkskevi.qnssl.com/a68cbd3e27f46b4f02ea12b7b1a1abca 然后产生的新序列中,对于每一个颜色c,都有出现的位置,L(c)表示最小位置和最大位置之差,求L(c)总和最小的新序列. 分析 LCS 是公共上升子序列,在动态转移的过程中,考虑