JVM GC算法 CMS 详解(转)

前言

CMS,全称Concurrent Low Pause Collector,是jdk1.4后期版本开始引入的新gc算法,在jdk5和jdk6中得到了进一步改进,它的主要适合场景是对响应时间的重要性需求 大于对吞吐量的要求,能够承受垃圾回收线程和应用线程共享处理器资源,并且应用中存在比较多的长生命周期的对象的应用。CMS是用于对tenured generation的回收,也就是年老代的回收,目标是尽量减少应用的暂停时间,减少full gc发生的几率,利用和应用程序线程并发的垃圾回收线程来标记清除年老代。在我们的应用中,因为有缓存的存在,并且对于响应时间也有比较高的要求,因此希 望能尝试使用CMS来替代默认的server型JVM使用的并行收集器,以便获得更短的垃圾回收的暂停时间,提高程序的响应性。

CMS收集周期

CMS并非没有暂停,而是用两次短暂停来替代串行标记整理算法的长暂停,它的收集周期是这样:
初始标记(CMS-initial-mark) -> 并发标记(CMS-concurrent-mark) -> 重新标记(CMS-remark) -> 并发清除(CMS-concurrent-sweep) ->并发重设状态等待下次CMS的触发(CMS-concurrent-reset)。
其中的1,3两个步骤需要暂停所有的应用程序线程的。第一次暂停从root对象开始标记存活的对象,这个阶段称为初始标记;第二次暂停是在并发标记之后, 暂停所有应用程序线程,重新标记并发标记阶段遗漏的对象(在并发标记阶段结束后对象状态的更新导致)。第一次暂停会比较短,第二次暂停通常会比较长,并且 remark这个阶段可以并行标记。

而并发标记、并发清除、并发重设阶段的所谓并发,是指一个或者多个垃圾回收线程和应用程序线程并发地运行,垃圾回收线程不会暂停应用程序的执行,如果你有多于一个处理器,那么并发收集线程将与应用线程在不同的处理器上运行,显然,这样的开销就是会降低应用的吞吐量。Remark阶段的并行,是指暂停了所有应用程序后,启动一定数目的垃圾回收进程进行并行标记,此时的应用线程是暂停的。

CMS的young generation的回收采用的仍然是并行复制收集器,这个跟Paralle gc算法是一致的。

参数介绍

1、启用CMS:-XX:+UseConcMarkSweepGC。
2。CMS默认启动的回收线程数目是 (ParallelGCThreads + 3)/4) ,如果你需要明确设定,可以通过-XX:ParallelCMSThreads=20来设定,其中ParallelGCThreads是年轻代的并行收集线程数
3、CMS是不会整理堆碎片的,因此为了防止堆碎片引起full gc,通过会开启CMS阶段进行合并碎片选项:-XX:+UseCMSCompactAtFullCollection,开启这个选项一定程度上会影响性能,阿宝的blog里说也许可以通过配置适当的CMSFullGCsBeforeCompaction来调整性能,未实践。
4.为了减少第二次暂停的时间,开启并行remark: -XX:+CMSParallelRemarkEnabled。如果remark还是过长的话,可以开启-XX:+CMSScavengeBeforeRemark选项,强制remark之前开始一次minor gc,减少remark的暂停时间,但是在remark之后也将立即开始又一次minor gc。

5.为了避免Perm区满引起的full gc,建议开启CMS回收Perm区选项:
+CMSPermGenSweepingEnabled -XX:+CMSClassUnloadingEnabled

6.默认CMS是在tenured generation沾满68%的时候开始进行CMS收集,如果你的年老代增长不是那么快,并且希望降低CMS次数的话,可以适当调高此值:
-XX:CMSInitiatingOccupancyFraction=80

这里修改成80%沾满的时候才开始CMS回收。

7.年轻代的并行收集线程数默认是(cpu <= 8) ? cpu : 3 + ((cpu * 5) / 8),如果你希望降低这个线程数,可以通过-XX:ParallelGCThreads= N 来调整。

8.进入重点,在初步设置了一些参数后,例如:

-server -Xms1536m -Xmx1536m -XX:NewSize=256m -XX:MaxNewSize=256m -XX:PermSize=64m
-XX:MaxPermSize=64m -XX:-UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection
-XX:CMSInitiatingOccupancyFraction=80 -XX:+CMSParallelRemarkEnabled
-XX:SoftRefLRUPolicyMSPerMB=0 

需要在生产环境或者压测环境中测量这些参数下系统的表现,这时候需要打开GC日志查看具体的信息,因此加上参数:

-verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:/home/test/logs/gc.log

在运行相当长一段时间内查看CMS的表现情况,CMS的日志输出类似这样:

4391.322: [GC [1 CMS-initial-mark: 655374K(1310720K)] 662197K(1546688K), 0.0303050 secs] [Times: user=0.02 sys=0.02, real=0.03 secs]
4391.352: [CMS-concurrent-mark-start]
4391.779: [CMS-concurrent-mark: 0.427/0.427 secs] [Times: user=1.24 sys=0.31, real=0.42 secs]
4391.779: [CMS-concurrent-preclean-start]
4391.821: [CMS-concurrent-preclean: 0.040/0.042 secs] [Times: user=0.13 sys=0.03, real=0.05 secs]
4391.821: [CMS-concurrent-abortable-preclean-start]
4392.511: [CMS-concurrent-abortable-preclean: 0.349/0.690 secs] [Times: user=2.02 sys=0.51, real=0.69 secs]
4392.516: [GC[YG occupancy: 111001 K (235968 K)]4392.516: [Rescan (parallel) , 0.0309960 secs]4392.547: [weak refs processing, 0.0417710 secs] [1 CMS-remark: 655734K(1310720K)] 766736K(1546688K), 0.0932010 secs] [Times: user=0.17 sys=0.00, real=0.09 secs]
4392.609: [CMS-concurrent-sweep-start]
4394.310: [CMS-concurrent-sweep: 1.595/1.701 secs] [Times: user=4.78 sys=1.05, real=1.70 secs]
4394.310: [CMS-concurrent-reset-start]
4394.364: [CMS-concurrent-reset: 0.054/0.054 secs] [Times: user=0.14 sys=0.06, real=0.06 secs] 

其中可以看到CMS-initial-mark阶段暂停了0.0303050秒,而CMS-remark阶段暂停了0.0932010秒,因此两次暂停的总共时间是0.123506秒,也就是123毫秒左右。两次短暂停的时间之和在200以下可以称为正常现象。

但是你很可能遇到两种fail引起full gc:Prommotion failed和Concurrent mode failed。

Prommotion failed的日志输出大概是这样:

[ParNew (promotion failed): 320138K->320138K(353920K), 0.2365970 secs]42576.951: [CMS: 1139969K->1120688K(
166784K), 9.2214860 secs] 1458785K->1120688K(2520704K), 9.4584090 secs] 

这个问题的产生是由于救助空间不够,从而向年老代转移对象,年老代没有足够的空间来容纳这些对象,导致一次full gc的产生。解决这个问题的办法有两种完全相反的倾向:增大救助空间、增大年老代或者去掉救助空间。 增大救助空间就是调整-XX:SurvivorRatio参数,这个参数是Eden区和Survivor区的大小比值,默认是32,也就是说Eden区是 Survivor区的32倍大小,要注意Survivo是有两个区的,因此Surivivor其实占整个young genertation的1/34。调小这个参数将增大survivor区,让对象尽量在survitor区呆长一点,减少进入年老代的对象。去掉救助空 间的想法是让大部分不能马上回收的数据尽快进入年老代,加快年老代的回收频率,减少年老代暴涨的可能性,这个是通过将-XX:SurvivorRatio 设置成比较大的值(比如65536)来做到。在我们的应用中,将young generation设置成256M,这个值相对来说比较大了,而救助空间设置成默认大小(1/34),从压测情况来看,没有出现prommotion failed的现象,年轻代比较大,从GC日志来看,minor gc的时间也在5-20毫秒内,还可以接受,因此暂不调整。

Concurrent mode failed的产生是由于CMS回收年老代的速度太慢,导致年老代在CMS完成前就被沾满,引起full gc,避免这个现象的产生就是调小-XX:CMSInitiatingOccupancyFraction参数的值,让CMS更早更频繁的触发,降低年老代被沾满的可能。我们的应用暂时负载比较低,在生产环境上年老代的增长非常缓慢,因此暂时设置此参数为80。在压测环境下,这个参数的表现还可以,没有出现过Concurrent mode failed。

时间: 2024-10-12 13:56:07

JVM GC算法 CMS 详解(转)的相关文章

【布隆算法】布隆算法最详解

布隆算法最详解 本文源地址: http://www.fullstackyang.com/...,转发请注明该地址或segmentfault地址,谢谢! 1. 背景知识 在网上已经有很多关于布隆过滤器的介绍了,这里就不再赘述,下面简单地提炼几个要点: 布隆过滤器是用来判断一个元素是否出现在给定集合中的重要工具,具有快速,比哈希表更节省空间等优点,而缺点在于有一定的误识别率(false-positive,假阳性),亦即,它可能会把不是集合内的元素判定为存在于集合内,不过这样的概率相当小,在大部分的生

Mahout推荐算法API详解

前言 用Mahout来构建推荐系统,是一件既简单又困难的事情.简单是因为Mahout完整地封装了“协同过滤”算法,并实现了并行化,提供非常简单的API接口:困难是因为我们不了解算法细节,很难去根据业务的场景进行算法配置和调优. 本文将深入算法API去解释Mahout推荐算法底层的一些事. 1. Mahout推荐算法介绍 Mahoutt推荐算法,从数据处理能力上,可以划分为2类: 单机内存算法实现 基于Hadoop的分步式算法实现 1). 单机内存算法实现 单机内存算法实现:就是在单机下运行的算法

各大公司广泛使用的在线学习算法FTRL详解

各大公司广泛使用的在线学习算法FTRL详解 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和在线数据流,google先后三年时间(2010年-2013年)从理论研究到实际工程化实现的FTRL(Follow-the-regularized-Leader)算法,在处理诸如逻辑回归之类的带非光滑正则化项(例如1范数,做模型复杂度控制和稀疏化)的凸优化问题上性能非常出色,据闻国内各大互联网公司都第一时间应

javascript常用经典算法实例详解

javascript常用经典算法实例详解 这篇文章主要介绍了javascript常用算法,结合实例形式较为详细的分析总结了JavaScript中常见的各种排序算法以及堆.栈.链表等数据结构的相关实现与使用技巧,需要的朋友可以参考下 本文实例讲述了javascript常用算法.分享给大家供大家参考,具体如下: 入门级算法-线性查找-时间复杂度O(n)--相当于算法界中的HelloWorld ? 1 2 3 4 5 6 7 8 9 10 //线性搜索(入门HelloWorld) //A为数组,x为要

Isolation Forest算法实现详解

本文介绍的 Isolation Forest 算法原理请参看我的博客:Isolation Forest异常检测算法原理详解,本文中我们只介绍详细的代码实现过程. 1.ITree的设计与实现 首先,我们参看原论文中的ITree的构造伪代码: 这里写图片描述 1.1 设计ITree类的数据结构 由原论文[1,2]以及上述伪代码可知,ITree是一个二叉树,并且构建ITree的算法采用的是递归构建.同时构造的结束条件是: 当前节点的高度超过了算法设置的阈值 l ;当前子树只包含一个叶节点:当前子树的所

[转]Mahout推荐算法API详解

Mahout推荐算法API详解 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占

分享一位国外大牛写的不规则物体像素级碰撞检测算法及详解

最近在做一个有关投篮的小游戏,需要用到像素级碰撞检测,as3自带的hitTestObject显然无法满足需要.网上搜寻了一下,在9ria挖坟挖到两篇好文章: 分享一个超高效的不规则物体碰撞检测的类~~ [Lii]超高效的不规则物体碰撞检测<效率优化> 第一篇文章介绍了一位国外大牛写的不规则物体像素级碰撞检测算法,原理是用bitmap绘制两对象不透明区域,利用混合模式计算出两对象的相交区域. 第二篇文章则在该算法的基础上进行了效率的优化,原理是判断出两对象发生hitTestObject碰撞后,将

jvm堆内存优化详解

在日常的运维工作中用到tomcat,都需要对tomcat中的jvm虚拟机进行优化,只有知道需要优化参数的具体用处,才能深刻体会优化jvm的意义所在. 在平常的工作中我们谈对jvm的优化,主要是针对java的堆内存的优化和垃圾回收机制的优化. JVM堆内存示意图: JVM的堆内存的组成: young generation:新生代 eden:伊甸园区 surived:存活区 其中存活区有2个,第1个为S0,第2个为S1 old generation:老年代 permanent generation:

Java虚拟机5:Java垃圾回收(GC)机制详解

http://www.cnblogs.com/xrq730/p/4836700.html 哪些内存需要回收? 哪些内存需要回收是垃圾回收机制第一个要考虑的问题,所谓“要回收的垃圾”无非就是那些不可能再被任何途径使用的对象.那么如何找到这些对象? 1.引用计数法 这个算法 的实现是,给对象中添加一个引用计数器,每当一个地方引用这个对象时,计数器值+1:当引用失效时,计数器值-1.任何时刻计数值为0的对象就是不可能再 被使用的.这种算法使用场景很多,但是,Java中却没有使用这种算法,因为这种算法很