大数类模板(+-*/%等等)

注意:必需先定义,再使用。

#include <iostream>
#include <cstring>
using namespace std;

#define DIGIT   4       //ËÄλ¸ô¿ª,¼´Íò½øÖÆ
#define DEPTH   10000   //Íò½øÖÆ
#define MAX     1000
typedef int bignum_t[MAX+1];

/************************************************************************/
/* ¶ÁÈ¡²Ù×÷Êý£¬¶Ô²Ù×÷Êý½øÐд¦Àí´æ´¢ÔÚÊý×éÀï                             */
/************************************************************************/
int read(bignum_t a,istream&is=cin)
{
    char buf[MAX*DIGIT+1],ch ;
    int i,j ;
    memset((void*)a,0,sizeof(bignum_t));
    if(!(is>>buf))return 0 ;
    for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--)
    ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ;
    for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0');
    for(i=1;i<=a[0];i++)
    for(a[i]=0,j=0;j<DIGIT;j++)
    a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ;
    for(;!a[a[0]]&&a[0]>1;a[0]--);
    return 1 ;
}

void write(const bignum_t a,ostream&os=cout)
{
    int i,j ;
    for(os<<a[i=a[0]],i--;i;i--)
    for(j=DEPTH/10;j;j/=10)
    os<<a[i]/j%10 ;
}

int comp(const bignum_t a,const bignum_t b)
{
    int i ;
    if(a[0]!=b[0])
    return a[0]-b[0];
    for(i=a[0];i;i--)
    if(a[i]!=b[i])
    return a[i]-b[i];
    return 0 ;
}

int comp(const bignum_t a,const int b)
{
    int c[12]=
    {
        1
    }
    ;
    for(c[1]=b;c[c[0]]>=DEPTH;c[c[0]+1]=c[c[0]]/DEPTH,c[c[0]]%=DEPTH,c[0]++);
    return comp(a,c);
}

int comp(const bignum_t a,const int c,const int d,const bignum_t b)
{
    int i,t=0,O=-DEPTH*2 ;
    if(b[0]-a[0]<d&&c)
    return 1 ;
    for(i=b[0];i>d;i--)
    {
        t=t*DEPTH+a[i-d]*c-b[i];
        if(t>0)return 1 ;
        if(t<O)return 0 ;
    }
    for(i=d;i;i--)
    {
        t=t*DEPTH-b[i];
        if(t>0)return 1 ;
        if(t<O)return 0 ;
    }
    return t>0 ;
}
/************************************************************************/
/* ´óÊýÓë´óÊýÏà¼Ó                                                       */
/************************************************************************/
void add(bignum_t a,const bignum_t b)
{
    int i ;
    for(i=1;i<=b[0];i++)
    if((a[i]+=b[i])>=DEPTH)
    a[i]-=DEPTH,a[i+1]++;
    if(b[0]>=a[0])
    a[0]=b[0];
    else
    for(;a[i]>=DEPTH&&i<a[0];a[i]-=DEPTH,i++,a[i]++);
    a[0]+=(a[a[0]+1]>0);
}
/************************************************************************/
/* ´óÊýÓëСÊýÏà¼Ó                                                       */
/************************************************************************/
void add(bignum_t a,const int b)
{
    int i=1 ;
    for(a[1]+=b;a[i]>=DEPTH&&i<a[0];a[i+1]+=a[i]/DEPTH,a[i]%=DEPTH,i++);
    for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++);
}
/************************************************************************/
/* ´óÊýÏà¼õ(±»¼õÊý>=¼õÊý)                                               */
/************************************************************************/
void sub(bignum_t a,const bignum_t b)
{
    int i ;
    for(i=1;i<=b[0];i++)
    if((a[i]-=b[i])<0)
    a[i+1]--,a[i]+=DEPTH ;
    for(;a[i]<0;a[i]+=DEPTH,i++,a[i]--);
    for(;!a[a[0]]&&a[0]>1;a[0]--);
}
/************************************************************************/
/* ´óÊý¼õȥСÊý(±»¼õÊý>=¼õÊý)                                           */
/************************************************************************/
void sub(bignum_t a,const int b)
{
    int i=1 ;
    for(a[1]-=b;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++);
    for(;!a[a[0]]&&a[0]>1;a[0]--);
}

void sub(bignum_t a,const bignum_t b,const int c,const int d)
{
    int i,O=b[0]+d ;
    for(i=1+d;i<=O;i++)
    if((a[i]-=b[i-d]*c)<0)
    a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH ;
    for(;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++);
    for(;!a[a[0]]&&a[0]>1;a[0]--);
}
/************************************************************************/
/* ´óÊýÏà³Ë£¬¶ÁÈë±»³ËÊýa£¬³ËÊýb£¬½á¹û±£´æÔÚc[]                          */
/************************************************************************/
void mul(bignum_t c,const bignum_t a,const bignum_t b)
{
    int i,j ;
    memset((void*)c,0,sizeof(bignum_t));
    for(c[0]=a[0]+b[0]-1,i=1;i<=a[0];i++)
    for(j=1;j<=b[0];j++)
    if((c[i+j-1]+=a[i]*b[j])>=DEPTH)
    c[i+j]+=c[i+j-1]/DEPTH,c[i+j-1]%=DEPTH ;
    for(c[0]+=(c[c[0]+1]>0);!c[c[0]]&&c[0]>1;c[0]--);
}
/************************************************************************/
/* ´óÊý³ËÒÔСÊý£¬¶ÁÈë±»³ËÊýa£¬³ËÊýb£¬½á¹û±£´æÔÚ±»³ËÊý                   */
/************************************************************************/
void mul(bignum_t a,const int b)
{
    int i ;
    for(a[1]*=b,i=2;i<=a[0];i++)
    {
        a[i]*=b ;
        if(a[i-1]>=DEPTH)
        a[i]+=a[i-1]/DEPTH,a[i-1]%=DEPTH ;
    }
    for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++);
    for(;!a[a[0]]&&a[0]>1;a[0]--);
}

void mul(bignum_t b,const bignum_t a,const int c,const int d)
{
    int i ;
    memset((void*)b,0,sizeof(bignum_t));
    for(b[0]=a[0]+d,i=d+1;i<=b[0];i++)
    if((b[i]+=a[i-d]*c)>=DEPTH)
    b[i+1]+=b[i]/DEPTH,b[i]%=DEPTH ;
    for(;b[b[0]+1];b[0]++,b[b[0]+1]=b[b[0]]/DEPTH,b[b[0]]%=DEPTH);
    for(;!b[b[0]]&&b[0]>1;b[0]--);
}
/**************************************************************************/
/* ´óÊýÏà³ý,¶ÁÈë±»³ýÊýa£¬³ýÊýb£¬½á¹û±£´æÔÚc[]Êý×é                         */
/* ÐèÒªcomp()º¯Êý                                                         */
/**************************************************************************/
void div(bignum_t c,bignum_t a,const bignum_t b)
{
    int h,l,m,i ;
    memset((void*)c,0,sizeof(bignum_t));
    c[0]=(b[0]<a[0]+1)?(a[0]-b[0]+2):1 ;
    for(i=c[0];i;sub(a,b,c[i]=m,i-1),i--)
    for(h=DEPTH-1,l=0,m=(h+l+1)>>1;h>l;m=(h+l+1)>>1)
    if(comp(b,m,i-1,a))h=m-1 ;
    else l=m ;
    for(;!c[c[0]]&&c[0]>1;c[0]--);
    c[0]=c[0]>1?c[0]:1 ;
}

void div(bignum_t a,const int b,int&c)
{
    int i ;
    for(c=0,i=a[0];i;c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--);
    for(;!a[a[0]]&&a[0]>1;a[0]--);
}
/************************************************************************/
/* ´óÊýƽ·½¸ù£¬¶ÁÈë´óÊýa£¬½á¹û±£´æÔÚb[]Êý×éÀï                           */
/* ÐèÒªcomp()º¯Êý                                                       */
/************************************************************************/
void sqrt(bignum_t b,bignum_t a)
{
    int h,l,m,i ;
    memset((void*)b,0,sizeof(bignum_t));
    for(i=b[0]=(a[0]+1)>>1;i;sub(a,b,m,i-1),b[i]+=m,i--)
    for(h=DEPTH-1,l=0,b[i]=m=(h+l+1)>>1;h>l;b[i]=m=(h+l+1)>>1)
    if(comp(b,m,i-1,a))h=m-1 ;
    else l=m ;
    for(;!b[b[0]]&&b[0]>1;b[0]--);
    for(i=1;i<=b[0];b[i++]>>=1);
}
/************************************************************************/
/* ·µ»Ø´óÊýµÄ³¤¶È                                                       */
/************************************************************************/
int length(const bignum_t a)
{
    int t,ret ;
    for(ret=(a[0]-1)*DIGIT,t=a[a[0]];t;t/=10,ret++);
    return ret>0?ret:1 ;
}
/************************************************************************/
/* ·µ»ØÖ¸¶¨Î»ÖõÄÊý×Ö£¬´ÓµÍλ¿ªÊ¼Êýµ½µÚb룬·µ»ØbλÉϵÄÊý               */
/************************************************************************/
int digit(const bignum_t a,const int b)
{
    int i,ret ;
    for(ret=a[(b-1)/DIGIT+1],i=(b-1)%DIGIT;i;ret/=10,i--);
    return ret%10 ;
}
/************************************************************************/
/* ·µ»Ø´óÊýĩβ0µÄ¸öÊý                                                  */
/************************************************************************/
int zeronum(const bignum_t a)
{
    int ret,t ;
    for(ret=0;!a[ret+1];ret++);
    for(t=a[ret+1],ret*=DIGIT;!(t%10);t/=10,ret++);
    return ret ;
}

void comp(int*a,const int l,const int h,const int d)
{
    int i,j,t ;
    for(i=l;i<=h;i++)
    for(t=i,j=2;t>1;j++)
    while(!(t%j))
    a[j]+=d,t/=j ;
}

void convert(int*a,const int h,bignum_t b)
{
    int i,j,t=1 ;
    memset(b,0,sizeof(bignum_t));
    for(b[0]=b[1]=1,i=2;i<=h;i++)
    if(a[i])
    for(j=a[i];j;t*=i,j--)
    if(t*i>DEPTH)
    mul(b,t),t=1 ;
    mul(b,t);
}
/************************************************************************/
/* ×éºÏÊý                                                               */
/************************************************************************/
void combination(bignum_t a,int m,int n)
{
    int*t=new int[m+1];
    memset((void*)t,0,sizeof(int)*(m+1));
    comp(t,n+1,m,1);
    comp(t,2,m-n,-1);
    convert(t,m,a);
    delete[]t ;
}
/************************************************************************/
/* ÅÅÁÐÊý                                                               */
/************************************************************************/
void permutation(bignum_t a,int m,int n)
{
    int i,t=1 ;
    memset(a,0,sizeof(bignum_t));
    a[0]=a[1]=1 ;
    for(i=m-n+1;i<=m;t*=i++)
    if(t*i>DEPTH)
    mul(a,t),t=1 ;
    mul(a,t);
}

#define SGN(x) ((x)>0?1:((x)<0?-1:0))
#define ABS(x) ((x)>0?(x):-(x))

int read(bignum_t a,int&sgn,istream&is=cin)
{
    char str[MAX*DIGIT+2],ch,*buf ;
    int i,j ;
    memset((void*)a,0,sizeof(bignum_t));
    if(!(is>>str))return 0 ;
    buf=str,sgn=1 ;
    if(*buf=='-')sgn=-1,buf++;
    for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--)
    ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ;
    for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0');
    for(i=1;i<=a[0];i++)
    for(a[i]=0,j=0;j<DIGIT;j++)
    a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ;
    for(;!a[a[0]]&&a[0]>1;a[0]--);
    if(a[0]==1&&!a[1])sgn=0 ;
    return 1 ;
}
struct bignum
{
    bignum_t num ;
    int sgn ;
    public :
    inline bignum()
    {
        memset(num,0,sizeof(bignum_t));
        num[0]=1 ;
        sgn=0 ;
    }
    inline int operator!()
    {
        return num[0]==1&&!num[1];
    }
    inline bignum&operator=(const bignum&a)
    {
        memcpy(num,a.num,sizeof(bignum_t));
        sgn=a.sgn ;
        return*this ;
    }
    inline bignum&operator=(const int a)
    {
        memset(num,0,sizeof(bignum_t));
        num[0]=1 ;
        sgn=SGN (a);
        add(num,sgn*a);
        return*this ;
    }
    ;
    inline bignum&operator+=(const bignum&a)
    {
        if(sgn==a.sgn)add(num,a.num);
        else if
        (sgn&&a.sgn)
        {
            int ret=comp(num,a.num);
            if(ret>0)sub(num,a.num);
            else if(ret<0)
            {
                bignum_t t ;
                memcpy(t,num,sizeof(bignum_t));
                memcpy(num,a.num,sizeof(bignum_t));
                sub (num,t);
                sgn=a.sgn ;
            }
            else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
        }
        else if(!sgn)
            memcpy(num,a.num,sizeof(bignum_t)),sgn=a.sgn ;
        return*this ;
    }
    inline bignum&operator+=(const int a)
    {
        if(sgn*a>0)add(num,ABS(a));
        else if(sgn&&a)
        {
            int  ret=comp(num,ABS(a));
            if(ret>0)sub(num,ABS(a));
            else if(ret<0)
            {
                bignum_t t ;
                memcpy(t,num,sizeof(bignum_t));
                memset(num,0,sizeof(bignum_t));
                num[0]=1 ;
                add(num,ABS (a));
                sgn=-sgn ;
                sub(num,t);
            }
            else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
        }
        else if
            (!sgn)sgn=SGN(a),add(num,ABS(a));
        return*this ;
    }
    inline bignum operator+(const bignum&a)
    {
        bignum ret ;
        memcpy(ret.num,num,sizeof (bignum_t));
        ret.sgn=sgn ;
        ret+=a ;
        return ret ;
    }
    inline bignum operator+(const int a)
    {
        bignum ret ;
        memcpy(ret.num,num,sizeof (bignum_t));
        ret.sgn=sgn ;
        ret+=a ;
        return ret ;
    }
    inline bignum&operator-=(const bignum&a)
    {
        if(sgn*a.sgn<0)add(num,a.num);
        else if
        (sgn&&a.sgn)
        {
            int ret=comp(num,a.num);
            if(ret>0)sub(num,a.num);
            else if(ret<0)
            {
                bignum_t t ;
                memcpy(t,num,sizeof(bignum_t));
                memcpy(num,a.num,sizeof(bignum_t));
                sub(num,t);
                sgn=-sgn ;
            }
            else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
        }
        else if(!sgn)add (num,a.num),sgn=-a.sgn ;
        return*this ;
    }
    inline bignum&operator-=(const int a)
    {
        if(sgn*a<0)add(num,ABS(a));
        else if(sgn&&a)
        {
            int  ret=comp(num,ABS(a));
            if(ret>0)sub(num,ABS(a));
            else if(ret<0)
            {
                bignum_t t ;
                memcpy(t,num,sizeof(bignum_t));
                memset(num,0,sizeof(bignum_t));
                num[0]=1 ;
                add(num,ABS(a));
                sub(num,t);
                sgn=-sgn ;
            }
            else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
        }
        else if
            (!sgn)sgn=-SGN(a),add(num,ABS(a));
        return*this ;
    }
    inline bignum operator-(const bignum&a)
    {
        bignum ret ;
        memcpy(ret.num,num,sizeof(bignum_t));
        ret.sgn=sgn ;
        ret-=a ;
        return ret ;
    }
    inline bignum operator-(const int a)
    {
        bignum ret ;
        memcpy(ret.num,num,sizeof(bignum_t));
        ret.sgn=sgn ;
        ret-=a ;
        return ret ;
    }
    inline bignum&operator*=(const bignum&a)
    {
        bignum_t t ;
        mul(t,num,a.num);
        memcpy(num,t,sizeof(bignum_t));
        sgn*=a.sgn ;
        return*this ;
    }
    inline bignum&operator*=(const int a)
    {
        mul(num,ABS(a));
        sgn*=SGN(a);
        return*this ;
    }
    inline bignum operator*(const bignum&a)
    {
        bignum ret ;
        mul(ret.num,num,a.num);
        ret.sgn=sgn*a.sgn ;
        return ret ;
    }
    inline bignum operator*(const int a)
    {
        bignum ret ;
        memcpy(ret.num,num,sizeof (bignum_t));
        mul(ret.num,ABS(a));
        ret.sgn=sgn*SGN(a);
        return ret ;
    }
    inline bignum&operator/=(const bignum&a)
    {
        bignum_t t ;
        div(t,num,a.num);
        memcpy (num,t,sizeof(bignum_t));
        sgn=(num[0]==1&&!num[1])?0:sgn*a.sgn ;
        return*this ;
    }
    inline bignum&operator/=(const int a)
    {
        int t ;
        div(num,ABS(a),t);
        sgn=(num[0]==1&&!num [1])?0:sgn*SGN(a);
        return*this ;
    }
    inline bignum operator/(const bignum&a)
    {
        bignum ret ;
        bignum_t t ;
        memcpy(t,num,sizeof(bignum_t));
        div(ret.num,t,a.num);
        ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*a.sgn ;
        return ret ;
    }
    inline bignum operator/(const int a)
    {
        bignum ret ;
        int t ;
        memcpy(ret.num,num,sizeof(bignum_t));
        div(ret.num,ABS(a),t);
        ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*SGN(a);
        return ret ;
    }
    inline bignum&operator%=(const bignum&a)
    {
        bignum_t t ;
        div(t,num,a.num);
        if(num[0]==1&&!num[1])sgn=0 ;
        return*this ;
    }
    inline int operator%=(const int a)
    {
        int t ;
        div(num,ABS(a),t);
        memset(num,0,sizeof (bignum_t));
        num[0]=1 ;
        add(num,t);
        return t ;
    }
    inline bignum operator%(const bignum&a)
    {
        bignum ret ;
        bignum_t t ;
        memcpy(ret.num,num,sizeof(bignum_t));
        div(t,ret.num,a.num);
        ret.sgn=(ret.num[0]==1&&!ret.num [1])?0:sgn ;
        return ret ;
    }
    inline int operator%(const int a)
    {
        bignum ret ;
        int t ;
        memcpy(ret.num,num,sizeof(bignum_t));
        div(ret.num,ABS(a),t);
        memset(ret.num,0,sizeof(bignum_t));
        ret.num[0]=1 ;
        add(ret.num,t);
        return t ;
    }
    inline bignum&operator++()
    {
        *this+=1 ;
        return*this ;
    }
    inline bignum&operator--()
    {
        *this-=1 ;
        return*this ;
    }
    ;
    inline int operator>(const bignum&a)
    {
        return sgn>0?(a.sgn>0?comp(num,a.num)>0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<0:0):a.sgn<0);
    }
    inline int operator>(const int a)
    {
        return sgn>0?(a>0?comp(num,a)>0:1):(sgn<0?(a<0?comp(num,-a)<0:0):a<0);
    }
    inline int operator>=(const bignum&a)
    {
        return sgn>0?(a.sgn>0?comp(num,a.num)>=0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<=0:0):a.sgn<=0);
    }
    inline int operator>=(const int a)
    {
        return sgn>0?(a>0?comp(num,a)>=0:1):(sgn<0?(a<0?comp(num,-a)<=0:0):a<=0);
    }
    inline int operator<(const bignum&a)
    {
        return sgn<0?(a.sgn<0?comp(num,a.num)>0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<0:0):a.sgn>0);
    }
    inline int operator<(const int a)
    {
        return sgn<0?(a<0?comp(num,-a)>0:1):(sgn>0?(a>0?comp(num,a)<0:0):a>0);
    }
    inline int operator<=(const bignum&a)
    {
        return sgn<0?(a.sgn<0?comp(num,a.num)>=0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<=0:0):a.sgn>=0);
    }
    inline int operator<=(const int a)
    {
        return sgn<0?(a<0?comp(num,-a)>=0:1):
        (sgn>0?(a>0?comp(num,a)<=0:0):a>=0);
    }
    inline int operator==(const bignum&a)
    {
        return(sgn==a.sgn)?!comp(num,a.num):0 ;
    }
    inline int operator==(const int a)
    {
        return(sgn*a>=0)?!comp(num,ABS(a)):0 ;
    }
    inline int operator!=(const bignum&a)
    {
        return(sgn==a.sgn)?comp(num,a.num):1 ;
    }
    inline int operator!=(const int a)
    {
        return(sgn*a>=0)?comp(num,ABS(a)):1 ;
    }
    inline int operator[](const int a)
    {
        return digit(num,a);
    }
    friend inline istream&operator>>(istream&is,bignum&a)
    {
        read(a.num,a.sgn,is);
        return  is ;
    }
    friend inline ostream&operator<<(ostream&os,const bignum&a)
    {
        if(a.sgn<0)
            os<<'-' ;
        write(a.num,os);
        return os ;
    }
    friend inline bignum sqrt(const bignum&a)
    {
        bignum ret ;
        bignum_t t ;
        memcpy(t,a.num,sizeof(bignum_t));
        sqrt(ret.num,t);
        ret.sgn=ret.num[0]!=1||ret.num[1];
        return ret ;
    }
    friend inline bignum sqrt(const bignum&a,bignum&b)
    {
        bignum ret ;
        memcpy(b.num,a.num,sizeof(bignum_t));
        sqrt(ret.num,b.num);
        ret.sgn=ret.num[0]!=1||ret.num[1];
        b.sgn=b.num[0]!=1||ret.num[1];
        return ret ;
    }
    inline int length()
    {
        return :: length(num);
    }
    inline int zeronum()
    {
        return :: zeronum(num);
    }
    inline bignum C(const int m,const int n)
    {
        combination(num,m,n);
        sgn=1 ;
        return*this ;
    }
    inline bignum P(const int m,const int n)
    {
        permutation(num,m,n);
        sgn=1 ;
        return*this ;
    }
};
bignum sum[36];
int main()
{
  for(int i=0;i<31;i++)
  {
      bignum n;
      n=(long long)1<<i;
      //sum[i]=(1+n)*n/2*n*n-2*n*(n*(n-1)*(n+1))/6;
        sum[i]=(n+2)*n*n*(n+1)/6;
    // cout<<n<<endl;
    //  cout<<sum[i]<<endl;
  }
   long long n;
   while(cin>>n)
   {
     bignum ans;
     ans=0;
     for(int i=0;i<31;i++)
     {
         long long x;
         x=(long long)1<<i;
         if(n>=x)
         {
             ans=ans+sum[i];
             n-=x;
             if(n==0)break;
         }
         else
         {
             bignum x1;  x1=(n+2);           //先定义,再使用
             bignum x3;  x3=n;
             bignum x2;  x2=(n+1);
             ans=ans+x1*x2*x3*x3/6;
             break;
         }
     }
     cout<<ans<<endl;
   }
}

大数类模板(+-*/%等等)

时间: 2024-10-20 22:35:50

大数类模板(+-*/%等等)的相关文章

【大数类模板】hdoj 4927 Series 1

题目很简单:分析发现满足杨辉三角,有通项公式,但是是高精度,大数题目. 记录一个大数类模板:以后好用 代码: #include<cstdio> #include<cstring> using namespace std; #define MAXN 9999 #define MAXSIZE 10 #define DLEN 4 class BigInt { private: int a[500]; int len; public: BigInt() {len = 1; memset(a

大数类模板

转自:http://blog.csdn.net/hackbuteer1/article/details/6595881 分别使用C++中的运算符重载的方法来实现大数之间的数学运算,包括加法.减法.乘法.除法.n次方.取模.大小比较.赋值以及输入流.输出流的重载.. 并且使用这个大数模板,顺利AC了HDOJ上的1134这个题目的Catalan数计数问题..http://acm.hdu.edu.cn/showproblem.php?pid=1134 大数模板的代码如下: #include<iostr

类模板的声明和使用

类模板是类的抽象,类是类模板的实例 在类模板内定义: 类模板名<实际类型名>对象名: 类模板名<实际类型名>对象名(实参表): 在类模板外定义成员函数: template<class  虚拟类型参数> 函数类型 类模板名<虚拟类型参数>::成员函数名(函数形参表){...} 如: template<class numtype> numtype Compare<numtype>::max() { return(x > y) ? x

第十五周oj刷题——Problem I: C++ 习题 比较大小-类模板

Description 声明一个类模板,利用它分别实现两个整数.浮点数和字符的比较,求出大数和小数.说明:在类模板外定义各成员函数. Input 输入两个整数.两个浮点数和两个字符 Output 从大到小输出两个整数.两个浮点数和两个字符 Sample Input 3 7 45.78 93.6 a A Sample Output 7 3 93.60 45.78 a A   /* All rights reserved. * 文件名称:test.cpp * 作者:陈丹妮 * 完成日期:2015年

17周 oj 比较大小 类模板

/*声明一个类模板,利用它分别实现两个整数. 浮点数和字符的比较,求出大数和小数. 说明:在类模板外定义各成员函数. 输入两个整数.两个浮点数和两个字符 从大到小输出两个整数.两个浮点数和两个字符 */ #include <iostream> #include <iomanip> using namespace std; template<class numtype> class Compare { public: Compare(numtype a,numtype b

17周 oj 比較大小 类模板

/*声明一个类模板,利用它分别实现两个整数. 浮点数和字符的比較,求出大数和小数. 说明:在类模板外定义各成员函数. 输入两个整数.两个浮点数和两个字符 从大到小输出两个整数.两个浮点数和两个字符 */ #include <iostream> #include <iomanip> using namespace std; template<class numtype> class Compare { public: Compare(numtype a,numtype b

HDU 5047 Sawtooth (JAVA大数类)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5047 题面: Sawtooth Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 1636    Accepted Submission(s): 637 Problem Description Think about a plane: ● O

C++学习笔记50:队列类模板

队列是只能向一端添加元素,从另一端删除元素的线性群体 循环队列 在想象中将数组弯曲成环形,元素出队时,后继元素不移动,每当队尾达到数组最后一个元素时,便再回到数组开头. 队列类模板 //Queue.h #ifndef QUEUE_H #define QUEUE_H #include <cassert> //类模板的定义 template <class T, int SIZE = 50> class Queue { private: int front, rear, count; T

C++ 类模板三(类模版中的static关键字)

//类模版中的static关键字 #include<iostream> using namespace std; /* 类模板本质上是c++编译器根据类型参数创建了不同的类, c++编译器在利用类模板生成类的时候会为每个类生成一个static变量 那么对于类中的static关键字就非常好理解了 static关键字修饰的变量是属于类的 同一个类的对象共享类的static静态变量 类模板中的static修饰的变量数据类型必须是确定的 不可以是类型参数 因为静态变量在类对象之前初始化 这时候还没有通