[luoguP2513] [HAOI2009]逆序对数列(DP)

传送门

f[i][j]表示前i个数,逆序对数为j的答案

则DP方程为:

f[1][0] = 1;
    for(i = 2; i <= n; i++)
        for(j = 0; j <= m; j++)
            for(k = j; k < j + i; k++)
                f[i][k] = (f[i][k] + f[i - 1][j]) % p;

但是会超时

所以搞个前缀和优化一下

#include <cstdio>
#include <iostream>
#define N 2001
#define p 10000

int n, m;
int f[N][N], sum[N][N];

inline int read()
{
	int x = 0, f = 1;
	char ch = getchar();
	for(; !isdigit(ch); ch = getchar()) if(ch == ‘-‘) f = -1;
	for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - ‘0‘;
	return x * f;
}

int main()
{
	int i, j, k;
	n = read();
	m = read();
	f[1][0] = 1;
	for(i = 0; i <= m; i++) sum[1][i] = 1;
	for(i = 2; i <= n; i++)
		for(j = 0; j <= m; j++)
		{
			if(j - i + 1 > 0)
				f[i][j] = (f[i][j] + ((sum[i - 1][j] - sum[i - 1][j - i]) % p + p) % p) % p;
			else
				f[i][j] = (f[i][j] + sum[i - 1][j]) % p;
			sum[i][j] = (sum[i][j - 1] + f[i][j]) % p;
		}
	printf("%d\n", f[n][m]);
	return 0;
}

  

时间: 2024-12-30 19:19:35

[luoguP2513] [HAOI2009]逆序对数列(DP)的相关文章

【bzoj2431】[HAOI2009]逆序对数列 dp

题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? 输入 第一行为两个整数n,k. 输出 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. 样例输入 4 1 样例输出 3 题解 dp傻*题 设f[i][j]表示1~i组成逆序对个数为j的数列的方案数,那么考虑第i个元素,它对逆序对个

[bzoj2431][HAOI2009][逆序对数列] (dp计数)

Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Output 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. Sample Input 4 1 Sample Output 3 样例说明: 下列3个数列逆序对数都为1:分别是1

bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Status][Discuss] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Ou

2431: [HAOI2009]逆序对数列

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 954  Solved: 548[Submit][Status] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Output 写入一个整数,

洛谷P2513 [HAOI2009]逆序对数列

P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? 输入输出格式 输入格式: 第一行为两个整数n,k. 输出格式: 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. 输入输出样例 输入样例#1: 4 1 输出样例#1: 3 说明 样例说明:

bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, 所以放在i+1后面的所有数都会与i+1形成逆序对 转移方程:dp[i][j]=Σ dp[i-1][j-k]  k∈[0,min(j,i-1)] 前缀和优化 朴素的DP #include<cstdio> #include<algorithm> using namespace std;

P2513 [HAOI2009]逆序对数列

P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? 错误日志: 没想対, 菜是原罪, 最近状态不佳 Solution 在一段 \(1 - (i - 1)\) 的排列中加入 \(i\) 你可以控制 \(i\) 插入的位置, 给这个排列的逆序对任意加上 \(1 - (i - 1)\) 对(从最右到最左插入)

BZOJ2431: [HAOI2009]逆序对数列

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 831  Solved: 473[Submit][Status] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Output 写入一个整数,

BZOJ-2431: [HAOI2009]逆序对数列 (傻逼递推)

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2401  Solved: 1389[Submit][Status][Discuss] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Ou