POJ—2709—Painter—【贪心】

Painter

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3157   Accepted: 1962

Description

The local toy store sells small fingerpainting kits with between three and twelve 50ml bottles of paint, each a different color. The paints are bright and fun to work with, and have the useful property that if you mix X ml each of any three different colors,
you get X ml of gray. (The paints are thick and "airy", almost like cake frosting, and when you mix them together the volume doesn‘t increase, the paint just gets more dense.) None of the individual colors are gray; the only way to get gray is by mixing exactly
three distinct colors, but it doesn‘t matter which three. Your friend Emily is an elementary school teacher and every Friday she does a fingerpainting project with her class. Given the number of different colors needed, the amount of each color, and the amount
of gray, your job is to calculate the number of kits needed for her class.

Input

The input consists of one or more test cases, followed by a line containing only zero that signals the end of the input. Each test case consists of a single line of five or more integers, which are separated by a space. The first integer N is the number of
different colors (3 <= N <= 12). Following that are N different nonnegative integers, each at most 1,000, that specify the amount of each color needed. Last is a nonnegative integer G <= 1,000 that specifies the amount of gray needed. All quantities are in
ml.

Output

For each test case, output the smallest number of fingerpainting kits sufficient to provide the required amounts of all the colors and gray. Note that all grays are considered equal, so in order to find the minimum number of kits for a test case you may need
to make grays using different combinations of three distinct colors.

Sample Input

3 40 95 21 0
7 25 60 400 250 0 60 0 500
4 90 95 75 95 10
4 90 95 75 95 11
5 0 0 0 0 0 333
0

Sample Output

2
8
2
3
4

首先除了灰色,其他颜色需要多少组颜料,然后求出辣么多组,每个颜料的余量,用剩余的去陪灰色

然后贪心策略:

每次取最多的三种颜色各1ml,配出1ml的灰色,

然后排序,重复上述过程,如果最多的三种颜色中,有一个为0,那么就要加一组,

然后所有颜色加上50ml,再重复上述过程,直到配出要求的那么多灰色

上代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
int colors[20];

bool cmp(int a,int b)   //从大到小排序
{
    return a>b;
}

int main()
{
    freopen("1003.in","r",stdin);
//    freopen("1003.out","w",stdout);
    int N,G;
    while(scanf("%d",&N)!=EOF)
    {
        if(N==0)
            break;
        int countn=0;
        for(int i=0;i<N;i++)
            scanf("%d",colors+i);
        scanf("%d",&G);

        sort(colors,colors+N,cmp);
        if(colors[0]%50==0)   //排序之后,colors[0]是最多的,如果能整除50,就那么多组
            countn=colors[0]/50;
        else
            countn=colors[0]/50+1;  //如果不能整除50,要加上一组,整除直接舍弃小数位

        for(int i=0;i<N;i++)    //求出各个颜色的余量
            colors[i]=countn*50-colors[i];

        while(G>0)
        {
            sort(colors,colors+N,cmp);
            if(!colors[0] || !colors[1] || !colors[2])  //如果最多的三个颜色中,有一个用光了,但此时灰色还没配齐,就要加一组
            {
                countn++;
                for(int i=0;i<N;i++)    //加了一组,所有颜色都要加上50ml
                    colors[i]+=50;
            }

            G--;    //每次配1ml
            colors[0]--;    //最多的用掉1ml
            colors[1]--;    //次多的用掉1ml
            colors[2]--;    //第三多的用掉1ml
        }
        printf("%d\n",countn);
    }
    return 0;
}
时间: 2024-10-05 23:58:45

POJ—2709—Painter—【贪心】的相关文章

poj 2709 Painter (贪心)

//需要n中普通原料和g ml灰色原料 //每三种不同普通原料各x ml 可以合成 x ml 灰色原料 //问最少需要集组原料 每组各原料50 ml # include <stdio.h> # include <algorithm> # include <string.h> using namespace std; int main() { int i,n,cot,g,a[15],g1,b[15]; while(~scanf("%d",&n)

poj 1456 Supermarket (贪心+并查集)

# include <stdio.h> # include <algorithm> # include <string.h> using namespace std; int fa[10010]; struct node { int p; int d; }; struct node a[10010]; bool cmp(node a1,node a2)//利润从大到小 { return a1.p>a2.p; } int find(int x) { if(fa[x]

POJ 1681 Painter&#39;s Problem (高斯消元)

题目地址:POJ 1681 跟前两题几乎一模一样的...不多说了.高斯消元+自由元枚举. 代码如下: #include <iostream> #include <string.h> #include <math.h> #include <queue> #include <algorithm> #include <stdlib.h> #include <map> #include <set> #include &

POJ 1862 Stripies 贪心+优先队列

http://poj.org/problem?id=1862 题目大意: 有一种生物能两两合并,合并之前的重量分别为m1和m2,合并之后变为2*sqrt(m1*m2),现在给定n个这样的生物,求合并成一个的最小重量 思路: m1+m2 >=  2*sqrt(m1*m2) 所以每次取大的去合并,能变小. 直接优先队列就可以啦. #include<cstdio> #include<cmath> #include<queue> using namespace std;

POJ 1681 Painter&#39;s Problem (高斯消元)

题目链接 题意: 一个n*n 的木板 ,每个格子 都 可以 染成 白色和黄色,( 一旦我们对也个格子染色 ,他的上下左右 都将改变颜色): 给定一个初始状态 , 求将 所有的 格子 染成黄色 最少需要染几次?  若 不能 染成 输出 inf. 分析: 和1222差不多,唯一的区别是这个题还要求 最短的步数,其实只需要枚举一下最后的x[][]是否为1,即是否需要按下, 由于只有无解或者解唯一,因为按的顺序是没有影响的,所以只要是有解一定唯一,而且最短的情况是每个格子只按一次, 因为按两次以后就变为

poj 2431 Expedition 贪心+最大堆

当油量不够时从走过的油站中选最大加油量的 #include<iostream> #include<queue> #include<stdlib.h> #include<algorithm> using namespace std; #define MAX_N 10005 struct node{ int dist,fuel; }t[MAX_N]; bool cmp(const node &a,const node &b) { return a

poj 1681 Painter&amp;#39;s Problem(高斯消元)

http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. 注意依据自由变元求其它解及求最优值的方法. #include <stdio.h> #include <algorithm> #include <set> #include <map> #include <vector> #include <math.h> #include

POJ 1681 Painter&#39;s Problem 【高斯消元 二进制枚举】

任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7667   Accepted: 3624 Description There is a square wall which is made of n*n small square bricks. Some bricks are white while some bric

poj 3298 Antimonotonicity 贪心

题意: 求一个序列的最大子序列,该子序列满足:a1>a2<a3>a4...... 分析: 贪心,从极大值起交替取这个序列中极小值.极大值. 代码: //poj 3298 //sep9 #include <iostream> using namespace std; const int maxN=30024; int a[maxN]; int main() { int cases; scanf("%d",&cases); while(cases--)