Tiling
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8200 | Accepted: 3970 |
Description
In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles?
Here is a sample tiling of a 2x17 rectangle.
Input
Input is a sequence of lines, each line containing an integer number 0 <= n <= 250.
Output
For each line of input, output one integer number in a separate line giving the number of possible tilings of a 2xn rectangle.
Sample Input
2 8 12 100 200
Sample Output
3 171 2731 845100400152152934331135470251 1071292029505993517027974728227441735014801995855195223534251
Source
#include<iostream> #include<cstring> #include<cstdio> using namespace std; int main() { int a[300][200]; memset(a,0,sizeof(a)); a[0][0]=1; a[1][0]=1; a[2][0]=3; for(int i=3; i<=250; i++) { for(int j=0; j<=100; j++) { a[i][j]+=(a[i-1][j]+a[i-2][j]+a[i-2][j]); if(a[i][j]>=10) { int t=a[i][j]; a[i][j]%=10; a[i][j+1]+=t/10; } } } int n; while(cin>>n) { if(n==0) cout<<1<<endl; else { int i=100; while(!a[n][i]) { i--; } for(int j=i; j>=0; j--) cout<<a[n][j]; cout<<endl; } } }
import java.io.*; import java.math.BigInteger; import java.util.*; public class Main { public static void main(String[] args) { Scanner cin = new Scanner ( System.in ); BigInteger arr[]=new BigInteger[300]; arr[1]=BigInteger.ONE; arr[0]=BigInteger.ONE; arr[2]=BigInteger.valueOf(3); arr[3]=BigInteger.valueOf(5); for(int i=4;i<=270;i++){ arr[i]=arr[i-2].multiply(BigInteger.valueOf(2)); arr[i]=arr[i].add(arr[i-1]); } int t; while(cin.hasNext()==true){ t=cin.nextInt(); System.out.println(arr[t].toString()); } } }
版权声明:本文为博主原创文章,未经博主允许不得转载。
时间: 2024-10-01 11:25:28