采药---0-1背包型dp

题目描述 Description

辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”

如果你是辰辰,你能完成这个任务吗?

输入描述 Input Description

输入第一行有两个整数T(1<=T<=1000)和M(1<=M<=100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。

输出描述 Output Description

输出包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。

样例输入 Sample Input

70 3

71 100

69 1

1 2

样例输出 Sample Output

3

数据范围及提示 Data Size & Hint

【数据规模】

对于30%的数据,M<=10;

对于全部的数据,M<=100。

典型的0-1背包型动态规划

状态转移方程dp[j] = max(dp[j], dp[j - a[i].time] + a[i].value);

j代表当前所剩时间,a[i].time代表采一种草药的时间,a[i].value是一种草药的价值

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[1005];
struct Node{
	int time;
	int value;
}a[105];
int main(){
	int i, j, t, m;
	scanf("%d%d", &t, &m);
	for (i = 1; i <= m; i++)
		scanf("%d%d", &a[i].time, &a[i].value);
	for (i = 1; i <= m; i++){
		for (j = t; j >= a[i].time; j--){
			dp[j] = max(dp[j], dp[j - a[i].time] + a[i].value);
		}
	}
	printf("%d\n", dp[t]);
	return 0;
}
时间: 2024-10-24 15:32:55

采药---0-1背包型dp的相关文章

NOJ 1860 保研(0/1背包概率dp)

保研 时间限制(普通/Java):1000MS/3000MS         运行内存限制:65536KByte 总提交:171          测试通过:40 题目描述 对于一些名校而言,保研不仅可以由学校推免,也可以由学生自己向希望保研的学校提出申请,这个过程有点类似于外国学生向学校提交简历等待Offer的过程.但是,投递申请需要亲自去相应学校的研招办递交材料,这就需要一些成本(比如路费等),且每个院校都有自己的录取成功率.现在,请在总成本不超过限制的情况下,求出最大的成功率. 输入 输入

洛谷——背包型dp

1.P1417 烹调方案 题目背景 由于你的帮助,火星只遭受了最小的损失.但gw懒得重建家园了,就造了一艘飞船飞向遥远的earth星.不过飞船飞到一半,gw发现了一个很严重的问题:肚子饿了~ gw还是会做饭的,于是拿出了储藏的食物准备填饱肚子.gw希望能在T时间内做出最美味的食物,但是这些食物美味程度的计算方式比较奇葩,于是绝望的gw只好求助于你了. 题目描述 一共有n件食材,每件食材有三个属性,ai,bi和ci,如果在t时刻完成第i样食材则得到ai-t*bi的美味指数,用第i件食材做饭要花去c

二叉苹果树(树型DP+背包)

二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点).这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来描述一根树枝的位置.下面是一颗有4个树枝的树: 2   5 \  / 3  4 \  / 1 现在这颗树枝条太多了,需要剪枝.但是一些树枝上长有苹果. 给定需要保留的树枝数量,求出最多能留住多少苹果. 程序名:apple 输入格式: 第1行2个数,N和Q(1<=Q<= N,1<N<=

POJ 1155 TELE 背包型树形DP 经典题

由电视台,中转站,和用户的电视组成的体系刚好是一棵树 n个节点,编号分别为1~n,1是电视台中心,2~n-m是中转站,n-m+1~n是用户,1为root 现在节点1准备转播一场比赛,已知从一个节点传送数据到达另一个节点,电视台需要一定的费用 若可以传送数据到达用户的节点n-m+1~n,这些用户各自愿意支付一定的费用给电视台 现在电视台希望在不亏本的情况下为尽量多的用户转播比赛 输出最多可以为多少用户转播比赛 背包类型的树形DP第一题 dp[i][j]表示以节点i为根的子树有j个用户获得转播,电视

HDU1561 The more, The Better(树型DP)

题目是有n个存有宝藏的城堡,攻克任何一个城堡都需要先攻克0个或其他1个城堡,问攻克m个城堡最多能得到多少宝藏. 题目给的城堡形成一个森林,添加一个超级根把森林连在一起就是树了,那么就考虑用树型DP: dp[u][m]表示以u结点为根的子树攻克m个结点的最大价值 但是这样转移太难了,根是从每个孩子通过各自分配若干的城堡去攻克转移的,一个排列组合数,阶乘,是指数级的时间复杂度! 看了题解,原来这是依赖背包,没看背包九讲..不过网上的博客似乎没说清楚,事实上这个状态应该是三个维度来表示: dp[u][

hdu 1011 Starship Troopers (依赖背包 树形dp)

题目: 链接:点击打开链接 题意: n个房间组成一棵树,你有m个战队,从1号房间开始依次clear每个房间,在每个房间需要花费的战队个数是bugs/20,得到的价值是the possibility of capturing a brain,求最大的价值. 算法: 树形dp,有依赖的背包问题.(依次clear每个房间) 思路: 状态转移dp[i][j]表示根结点为i时(房间i)花费j个战队能够得到的最大价值(捕捉到一个brain最大的可能值).递归求出每个根结点处的最大值,最后dp[1][m]就是

[HAOI2010][BZOJ2427] 软件安装|tarjan|树型dp

2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 463  Solved: 194[Submit][Status][Discuss] Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(

初学树型dp

树型DP DFS的回溯是树形DP的重点以及核心,当回溯结束后,root的子树已经被遍历完并处理完了.这便是树形DP的最重要的特点 自己认为应该注意的点 好多人都说在更新当前节点时,它的儿子结点都给更新完了,实际上这并不准确.对于当前节点,我们需要dfs它的儿子,并且在dfs中进行dp.在此过程中并不是等到儿子都更新完我们才更新当前节点的信息(假设当前节点为x, 有儿子son1 , son2, son3, 且son1已经更新完了, 即x已有了son1的信息, son2刚刚更新完,即dfs正在son

POJ3659 Cell Phone Network(树上最小支配集:树型DP)

题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. 树上的每个结点作为其子树的根可以有三个状态: 不属于支配集且还没被支配 不属于支配集但被其孩子支配 属于支配集 那么就是用dp[u][1\2\3]来表示动归的状态. 123转移该怎么转移就怎么转移..最后的结果就是min(dp[root][2],dp[root][3]). 要注意的是对于有些结点前2