目标检测中bounding box regression

https://zhuanlan.zhihu.com/p/26938549

RCNN实际包含两个子步骤,一是对上一步的输出向量进行分类(需要根据特征训练分类器);二是通过边界回归(bounding-box regression) 得到精确的目标区域,由于实际目标会产生多个子区域,旨在对完成分类的前景目标进行精确的定位与合并,避免多个检出。

fast rcnn中SoftmaxLoss代替了SVM,证明了softmax比SVM更好的效果,SmoothL1Loss取代Bouding box回归。将分类和边框回归进行合并(又一个开创性的思路),通过多任务Loss层进一步整合深度网络,统一了训练过程,从而提高了算法准确度。

http://caffecn.cn/?/question/160讲解bounding box regression过程

时间: 2024-11-08 02:09:57

目标检测中bounding box regression的相关文章

深度卷积神经网络在目标检测中的进展

作者:travelsea链接:https://zhuanlan.zhihu.com/p/22045213来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 近些年来,深度卷积神经网络(DCNN)在图像分类和识别上取得了很显著的提高.回顾从2014到2016这两年多的时间,先后涌现出了R-CNN,Fast R-CNN, Faster R-CNN, ION, HyperNet, SDP-CRC, YOLO,G-CNN, SSD等越来越快速和准确的目标检测方法. 基于Reg

目标检测 1 : 目标检测中的Anchor详解

咸鱼了半年,年底了,把这半年做的关于目标的检测的内容总结下. 本文主要有两部分: 目标检测中的边框表示 Anchor相关的问题,R-CNN,SSD,YOLO 中的anchor 目标检测中的边框表示 目标检测中,使用一个矩形的边框来表示.在图像中,可以基于图像坐标系使用多种方式来表示矩形框. 最直接的方式,使用矩形框的左上角和右下角在图像坐标系中的坐标来表示. 使用绝对坐标的\((x_{min},y_{min},x_{max},y_{max})\). 但是这种绝对坐标的表示方式,是以原始图像的像素

常见的目标检测中的背景建模方法

Author: JW. ZHOU 2014/6/13 最近一直在做前景检测方面的研究,刚开始主要是做一些工程性的应用,为了解决工程方面的问题,下了不少功夫,也看了不少最近国内外的文章.一直想做个总结,拖着拖着,终究却写成这篇极不成功的总结. 背景建模或前景检测的算法主要有: 1. Single Gaussian (单高斯模型) Real-time tracking of the human body 2. 混合高斯模型(Mixture of Gaussian Model) An improved

目标检测中的precision,recall,AP,mAP计算详解

交并比IoU衡量的是两个区域的重叠程度,是两个区域重叠部分面积占二者总面积(重叠部分只计算一次)的比例.如下图,两个矩形框的IoU是交叉面积(中间图片红色部分)与合并面积(右图红色部分)面积之比. Iou的定义 在目标检测任务中,如果我们模型输出的矩形框与我们人工标注的矩形框的IoU值大于某个阈值时(通常为0.5)即认为我们的模型输出了正确的 精准率与召回率(Precision & Recall) 大雁与飞机 假设现在有这样一个测试集,测试集中的图片只由大雁和飞机两种图片组成,如下图所示:  假

目标检测中的IOU

IOU是指两个bounding box的重合程度. 其中矩形框A和B的IOU=A∩B/A∪B,实际运算是对应的面积比较. 原文地址:https://www.cnblogs.com/AntonioSu/p/12193743.html

【边框回归】边框回归(Bounding Box Regression)详解(转)

转自:打开链接 Bounding-Box regression 最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000.这些paper中损失函数都包含了边框回归,除了rcnn详细介绍了,其他的paper都是一笔带过,或者直接引用rcnn就把损失函数写出来了.前三条网上解释比较多,后面的两条我看了很多paper,才得出这些结论. 为什么要边框回归? 什么是边框回归? 边框回归怎么做的?

目标检测中背景建模方法

最近一直在做前景检测方面的研究,刚开始主要是做一些工程性的应用,为了解决工程方面的问题,下了不少功夫,也看了不少最近国内外的文章.一直想做个总结,拖着拖着,终究却写成这篇极不成功的总结.      背景建模或前景检测的算法主要有: 1. Single Gaussian (单高斯模型) Real-time tracking of the human body 2. 混合高斯模型(Mixture of Gaussian Model) An improved adaptive background m

数据挖掘、目标检测中的cnn和cn---卷积网络和卷积神经网络

content 概述 文字识别系统LeNet-5 简化的LeNet-5系统 卷积神经网络的实现问题 深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 第二篇,讲讲经典的卷积神经网络.我不打算详细描述卷积神经网络的生物学运行机理,因为网络上有太多的教程可以参考.这里,主要描述其数学上的计算过程,也就是如何自己编程去实现的问题. 1. 概述 回想一下BP神经网络.BP网络每一层节点是一个线性的一维排列

CVPR2019目标检测方法进展综述

CVPR2019目标检测方法进展综述 置顶 2019年03月20日 14:14:04 SIGAI_csdn 阅读数 5869更多 分类专栏: 机器学习 人工智能 AI SIGAI 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/SIGAI_CSDN/article/details/88687747 SIGAI特约作者 陈泰红研究方向:机器学习.图像处理 目标检测是很多计算机视觉应用的基础,