X264编码流程详解(转)

http://blog.csdn.net/xingyu19871124/article/details/7671634

对H.264编码标准一直停留在理解原理的基础上,对于一个实际投入使用的编码器是如何构建起来一直感觉很神秘,于是决定在理解理论的基础上潜心于编码器实现框架。关于开源的H264编码器有很多,JMVC,T264、X264,这里选择X264,因为网上关于X264源码分析资源很多。X264编码器是一个开源的经过优化的高性能H.264编码器,目前最新的源码在本人的I5处理器的PC机上,编码1920x1080分辨率的视频序列在使用ultrafast配置的情况下,可以实现160fps左右的编码速度。

这里对源码分析并没有选择最新的源码,而是选用2009年2月份的版本,原因有二:一是这个版本是从网上下载下来的,已经是一个建立好的VS2008工程,对于像我这种用惯IDE调试的程序员来说,这可以大大提高源码阅读速度;二是虽然X264源码虽然几乎每天都有更新,但是从这个版本以后,最大的改动基本是针对多Slice编码的支持,其他都是在输入输出方面的一些改动,从这个版本学习可以较快进入编码部分的学习;三是这个版本当中已经有别人的很多的注释,便于自己理解;

一般将编码分为帧级、片级、宏块级编码,依次从上到下。下面就从这三个级分析X264编码流程:

一、帧级编码分析

定位到x264_encoder_encode这个函数,这个函数应该是H264编码最上层的函数,实现编码一帧视频。在进行下一步分析之前有必要了解,控制X264编码的全局性结构体x264_t,这个结构体控制着视频一帧一帧的编码,包括中间参考帧管理、码率控制、全局参数等一些重要参数和结构体。 下面是x264_t这个结构体的定义(这里仅对几个关键的结构和变量进行分析):

struct x264_t
{
    x264_param_t    param;//编码器编码参数,包括量化步长、编码级别等等一些参数

...........
    int             i_frame;//编码帧号,用于计算POC(picture of count 标识视频帧的解码顺序)
...........
    int             i_nal_type;     /* Nal 单元的类型,可以查看编码标准,有哪几种类型,需要理解的类型有:不分区(一帧作为一个片)非IDR图像的片;片分区A、片分区B、片分区C、IDR图像中的片、序列参数集、图像参数集 */

    int             i_nal_ref_idc;  /* Nal 单元的优先级别<span style="background-color: rgb(255, 255, 255);">取值范围[0,1,2,3],值越大表示优先级越高,此Nal单元就越重要</span>*/

    /* We use only one SPS(序列参数集) and one PPS(图像参数集) */
    x264_sps_t      sps_array[1];//结构体的数组
    x264_sps_t      *sps;
    x264_pps_t      pps_array[1];
    x264_pps_t      *pps;
    int             i_idr_pic_id;

......

    struct
    {
//这个结构体涉及到X264编码过程中的帧管理,理解这个结构体中的变量在编码标准的理论意义是非常重要的
        x264_frame_t *current[X264_BFRAME_MAX*4+3];/*已确定帧类型,待编码帧,每一个GOP在编码前,每一帧的类型在编码前已经确定。当进行编码时,从这里取出一帧数据。*/
        x264_frame_t *next[X264_BFRAME_MAX*4+3];//尚未确定帧类型的待编码帧,当确定后,会将此数组中的帧转移到current数组中去。
        x264_frame_t *unused[X264_BFRAME_MAX*4 + X264_THREAD_MAX*2 + 16+4];/*这个数组用于回收那些在编码中分配的frame空间,当有新的需要时,直接拿过来用,不用重新分配新的空间,提高效率*/
        /* For adaptive B decision */
        x264_frame_t *last_nonb;

        /* frames used for reference + sentinels */
        x264_frame_t *reference[16+2];//参考帧队列,注意参考帧都是重建帧

        int i_last_idr; /* 上一次刷新关键帧的帧号,配合前面的i_frame,可以用来计算POC */

        int i_input;    /* Number of input frames already accepted *///frames结构体中i_input指示当前输入的帧的(播放顺序)序号。

        int i_max_dpb;  /* 分配解码图像缓冲的最大数量(DPB) */
        int i_max_ref0;//最大前向参考帧数量
        int i_max_ref1;//最大后向参考帧数量
        int i_delay;    /* Number of frames buffered for B reordering */
        //i_delay设置为由B帧个数(线程个数)确定的帧缓冲延迟,在多线程情况下为i_delay = i_bframe + i_threads - 1。
        //而判断B帧缓冲填充是否足够则通过条件判断:h->frames.i_input <= h->frames.i_delay + 1 - h->param.i_threads。
        int b_have_lowres;  /* Whether 1/2 resolution luma planes are being used */
        int b_have_sub8x8_esa;
    } frames;//指示和控制帧编码过程的结构

    /* current frame being encoded */
    x264_frame_t    *fenc;//指向当前编码帧

    /* frame being reconstructed */
    x264_frame_t    *fdec;//指向当前重建帧,重建帧的帧号要比当前编码帧的帧号小1

    /* references lists */
    int             i_ref0;//前向参考帧的数量
    x264_frame_t    *fref0[16+3];     /* 存放前向参考帧的数组(注意参考帧均是重建帧) */
    int             i_ref1;//后向参考帧的数量
    x264_frame_t    *fref1[16+3];     /* 存放后向参考帧的数组*/
    int             b_ref_reorder[2];
........
};

定位到x264_encoder_encode这个函数,这个函数应该是H264编码最上层的函数,实现编码的帧级处理(如何进行参考帧管理、帧类型确定等等)。
 下面对x264_encoder_encode中几个关键函数以及关键部分进行分析:
1、x264_reference_update这个函数主要完成参考帧的更新,H.264的帧间预测需要使用参考帧,参考帧使用的都是已编码后的重建帧,每编码一帧的同时会重建此帧作为参考帧,在编码下一帧时,将此重建帧加入到参考帧队列中。函数实现如下:

static inline void x264_reference_update( x264_t *h )
{
    int i;

    if( h->fdec->i_frame >= 0 )//重建帧帧数大于等于零时
        h->i_frame++;//当前编码帧的帧号要比重建帧的帧号大1

    if( !h->fdec->b_kept_as_ref )/*如果重建帧不作为参考帧(不作为参考帧,当然不用加入参考帧队列了)*/
    {//when b frame is not used as reference frame
        if( h->param.i_threads > 1 )
        {
            x264_frame_push_unused( h, h->fdec );
            h->fdec = x264_frame_pop_unused( h );
        }
        return;//if b-frame is not used as reference, return
    }

    /* move lowres(低分辨率) copy of the image to the ref frame */
    for( i = 0; i < 4; i++)
    {/*暂时还不知道干嘛的*/
        XCHG( uint8_t*, h->fdec->lowres[i], h->fenc->lowres[i] );
        XCHG( uint8_t*, h->fdec->buffer_lowres[i], h->fenc->buffer_lowres[i] );
    }

    /* adaptive B decision needs a pointer, since it can‘t use the ref lists */
    if( h->sh.i_type != SLICE_TYPE_B )
        h->frames.last_nonb = h->fdec;

    /* move frame in the buffer */
    x264_frame_push( h->frames.reference, h->fdec );/*把重建帧放入参考队列中*/
    if( h->frames.reference[h->frames.i_max_dpb] )/*如果参考帧的个数大于解码图像缓存的最大数(decoded picture buffer(DPB))*/
        x264_frame_push_unused( h, x264_frame_shift( h->frames.reference ) );/*取出参考队列中第一个参考重建帧,并放入暂时不用帧队列中*/
    h->fdec = x264_frame_pop_unused( h );/*从暂时不用帧队列中,取出一帧作为新的重建帧buf*/
}

2、帧排序部分,在H.264标准中采用编码顺序与显示顺序不同的编码方式,对于一个已经确定帧类型的待编码序列:IBBPBBP在编码时需要先排序为IPBBPBB,然后进行编码。在X264代码中,实现在如下部分:

        //确定帧的类型
        x264_stack_align( x264_slicetype_decide, h );/*通过x264_slicetype_decide函数来确定决定h-frames.next[]中每一帧的类型*/

        /* 3: move some B-frames and 1 non-B to encode queue 这里来完成帧排序,还是有点巧妙的*/
        while( IS_X264_TYPE_B( h->frames.next[bframes]->i_type ) )
            bframes++;/*注意这个循环查找的作用,一方面可以确定第一个非B帧之前B帧的数量,也可以定位出第一个非B帧的位置*/
        x264_frame_push( h->frames.current, x264_frame_shift( &h->frames.next[bframes] ) );/*取出第一个非B帧,并放到current指针第一个位置:通过这两步完成帧排序的(例如BBP->PBB)*/
        /* FIXME: when max B-frames > 3, BREF may no longer be centered after GOP closing */
        if( h->param.b_bframe_pyramid && bframes > 1 )
        {
            x264_frame_t *mid = x264_frame_shift( &h->frames.next[bframes/2] );
            mid->i_type = X264_TYPE_BREF;
            x264_frame_push( h->frames.current, mid );
            bframes--;
        }
        while( bframes-- )
            x264_frame_push( h->frames.current, x264_frame_shift( h->frames.next ) ); /*然后依次取出B帧,并放到current队列中*/

下面就可以从h->frames.current队列中取出第一帧放入h->fenc中

h->fenc = x264_frame_shift( h->frames.current );//从当前编码帧中取出第一帧,作为当前编码帧

然后就开始编码,首先当前编码帧(h->fenc)的类型,设定slice类型,这里就不解释了,关于IDR帧,执行了x264_reference_reset这个函数将参考帧队列清空。
接着进行相关参数的赋值,这里主要对POC的计算强调一下:

h->fenc->i_poc = 2 * (h->fenc->i_frame - h->frames.i_last_idr);//考虑到场编码,POC每帧增长为2,如果是场编码POC增长为1

3、重建参考帧列表(x264_reference_build_list),即将参考帧列表中的参考帧分为前向参考帧和后向参考帧,并根据POC进行参考帧排序。函数具体实现如下:

static inline void x264_reference_build_list( x264_t *h, int i_poc )
{
    int i;
    int b_ok;

    /* build ref list 0/1 */
    h->i_ref0 = 0;//前向参考帧索引
    h->i_ref1 = 0;//后向参考帧索引
    for( i = 0; h->frames.reference[i]; i++ )
    {//注意这里都是指针操作
        if( h->frames.reference[i]->i_poc < i_poc )
        {//小于当前帧POC的,放到前向参考帧列表中
            h->fref0[h->i_ref0++] = h->frames.reference[i];
        }
        else if( h->frames.reference[i]->i_poc > i_poc )
        {//大于当前帧POC的,放到后向参考帧列表中
            h->fref1[h->i_ref1++] = h->frames.reference[i];
        }
    }

    /* Order ref0 from higher to lower poc */
    do
    {/*采用冒泡排序(不知道使用dowhile+for循环与双重for循环有什么优势),对参考帧按照POC从高到低进行排序*/
        b_ok = 1;
        for( i = 0; i < h->i_ref0 - 1; i++ )
        {
            if( h->fref0[i]->i_poc < h->fref0[i+1]->i_poc )
            {
                XCHG( x264_frame_t*, h->fref0[i], h->fref0[i+1] );
                b_ok = 0;
                break;
            }
        }
    } while( !b_ok );
    /* Order ref1 from lower to higher poc (bubble sort) for B-frame */
    do
    {
        b_ok = 1;
        for( i = 0; i < h->i_ref1 - 1; i++ )
        {
            if( h->fref1[i]->i_poc > h->fref1[i+1]->i_poc )
            {
                XCHG( x264_frame_t*, h->fref1[i], h->fref1[i+1] );
                b_ok = 0;
                break;
            }
        }
    } while( !b_ok );

    /* In the standard, a P-frame‘s ref list is sorted by frame_num.
     * We use POC, but check whether explicit reordering is needed */
    h->b_ref_reorder[0] =
    h->b_ref_reorder[1] = 0;
    if( h->sh.i_type == SLICE_TYPE_P )
    {
        for( i = 0; i < h->i_ref0 - 1; i++ )
            if( h->fref0[i]->i_frame_num < h->fref0[i+1]->i_frame_num )
            {
                h->b_ref_reorder[0] = 1;
                break;
            }
    }

    h->i_ref1 = X264_MIN( h->i_ref1, h->frames.i_max_ref1 );
    h->i_ref0 = X264_MIN( h->i_ref0, h->frames.i_max_ref0 );
    h->i_ref0 = X264_MIN( h->i_ref0, h->param.i_frame_reference ); // if reconfig() has lowered the limit
    assert( h->i_ref0 + h->i_ref1 <= 16 );
    h->mb.pic.i_fref[0] = h->i_ref0;//为什么参考帧选择这两个,还没有搞懂
    h->mb.pic.i_fref[1] = h->i_ref1;
}

4、初始化比特流,写入SPS以及PPS信息后就开始进行片级编码。

    if( i_nal_type == NAL_SLICE_IDR && h->param.b_repeat_headers )
    {/*SPS和PPS是解码需要用到的信息,因此只有解码器解析了SPS和PPS信息
     才能进行解码,这就是为什么在每个IDR帧前写入这些信息*/
        if( h->fenc->i_frame == 0 )
        {//仅仅在第一针写入sei信息
            /* identify ourself */
    <span style="white-space: pre;">    </span>x264_nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );/*开始整理nal。*/
            x264_sei_version_write( h, &h->out.bs );//写sei信息
            x264_nal_end( h );
        }

        /* generate sequence parameters */
        x264_nal_start( h, NAL_SPS, NAL_PRIORITY_HIGHEST );/*开始整理nal。一个nal单元的首地址被赋值,
<span style="white-space: pre;">            </span>将要处理此新的nal单元;设置nal的优先权和类型。*/
        x264_sps_write( &h->out.bs, h->sps );/*写SPS信息。
            将序列参数集sps写进位流结构中h->out.bs
            不是每次都要写SPS and PPS,只有碰见立即刷新片(NAL_SLICE_IDR)时才写*/
        x264_nal_end( h );/*结束nal,整理nal
            (1)输出新nal单元的地址
            (2)自增表示下一个新nal单元的序号*/

        /* generate picture parameters */
        x264_nal_start( h, NAL_PPS, NAL_PRIORITY_HIGHEST );/*开始整理nal。
                一个nal单元的首地址被赋值,将要处理此新的nal单元;设置nal的优先权和类型。*/
        x264_pps_write( &h->out.bs, h->pps );/*写PPS信息。
            将序列参数集sps写进位流结构中h->out.bs
            不是每次都要写SPS and PPS,只有碰见立即刷新片(NAL_SLICE_IDR)时才写*/
        x264_nal_end( h );/*结束nal,整理nal
            (1)输出新nal单元的地址
            (2)自增表示下一个新nal单元的序号*/
    }

接着就开始片级编码x264_slices_write( h );

二、片级编码分析

.......................

X264编码流程详解(转)

时间: 2024-08-02 18:20:23

X264编码流程详解(转)的相关文章

IMS AKA鉴权及应用流程详解

IMS AKA鉴权及应用流程详解 @auth doubleRabbit @date 2017-03-14 目的 了解鉴权及通信类业务相关鉴权算法的概念原理 了解IMS注册流程 了解IMS鉴权流程应用 鉴权含义 鉴权是指用户访问系统的权利,是提升系统安全性的一种方式,传统鉴权方法就是用户名与密码. 鉴权与授权的区别联系.逻辑上授权过程发生在鉴权之后,而实际中有时鉴权与授权对于用户来说体现为同一过程.例如在EPC附着过程中,先发生AIA鉴权过程,再发生ULR位置更新过程(授权). 接下来讲的是针对通

XMPP 协议工作流程详解

XMPP 要点. 1. 客户端(C) 和服务器端(S) 通过TCP连接5222端口进行全双工通信. 2. XMPP 信息均包含在 XML streams中.一个XMPP会话, 开始于<stream> 标签, 并结束于</stream>标签.所有其他的信息都位于这俩标签之间. 3. 出于安全目的考虑, 开始<stream>之后, 后续的内容会被适度的使用 Transpor Layer Security (TLS) 协商传输 和强制性的 Simple Authenticat

unity3d-配置Android环境,打包发布Apk流程详解

31:unity3d-配置Android环境,打包发布Apk流程详解 作者 阿西纳尼 关注 2016.08.28 22:52 字数 498 阅读 1806评论 0喜欢 5 Unity配置Android环境,打包发布安卓流程 一:SDK与JDK下载地址:http://pan.baidu.com/s/1mhVaXHe下载完成后,解压文件 SDK文件 二.安装 JDK 运行安装程序jdk-7u67-windows-x64 Java-JDK 分别点击下一步进行安装. 安装中 在安装过程中先后会出现两次选

CentOS 5,6 系统启动流程详解

一.linux 组成介绍 1.linux 组成: Linux: kernel+rootfs(根文件系统) kernel: 进程管理.内存管理.网络管理.驱动程序.文件系统.安全功能 rootfs: 程序和glibc 库:函数集合, function, 调用接口(头文件负责描述) 过程调用: procedure,无返回值 函数调用: function 程序:二进制执行文件 2.内核设计流派: 单内核(monolithic kernel): Linux 把所有功能集成于同一个程序 微内核(micro

Android4.0 input事件输入流程详解(中间层到应用层)

在Android系统中,类似于键盘按键.触摸屏等事件是由WindowManagerService服务来管理的,然后再以消息的形式来分发给应用程序进行处理.系统启动时,窗口管理服务也会启动,该服务启动过程中,会通过系统输入管理器InputManager来负责监控键盘消息.当某一个Activity激活时,会在该Service下注册一个接收消息的通道,表明可以处理具体的消息,然后当有消息时,InputManager就会分发给当前处于激活状态下的Activity进行处理. InputManager的启动

ssl协议工作流程详解

SSL 协议 (HTTPS) 握手.工作流程详解 (双向 HTTPS 流程 )SSL 协议的工作流程:服务器认证阶段: 1)客户端向服务器发送一个开始信息"Hello"以便开始一个新的会话连接; 2)服务器根据客户的信息确定是否需要生成新的主密钥,如需要则服务器在响应客户的"Hello"信息时将包含生成主密钥所需的信息; 3)客户根据收到的服务器响应信息,产生一个主密钥,并用服务器的公开密钥加密后传给服务器; 4)服务器恢复该主密钥,并返回给客户一个用主密钥认证的信

[nRF51822] 5、 霸屏了——详解nRF51 SDK中的GPIOTE(从GPIO电平变化到产生中断事件的流程详解)

:由于在大多数情况下GPIO的状态变化都会触发应用程序执行一些动作.为了方便nRF51官方把该流程封装成了GPIOTE,全称:The GPIO Tasks and Events (GPIOTE) . 从GPIO电平变化到产生中断事件的流程详解  1.GPIOTE概览 nRF51上面有32个GPIO,由于在大多数情况下GPIO的状态变化都会触发应用程序执行一些动作.为了方便nRF51官方把该流程封装成了GPIOTE,全称:The GPIO Tasks and Events (GPIOTE) .GP

linux中断流程详解

异常体系比较复杂,但是linux已经准备了很多的函数和框架,但是因为中断是和具体的开发板相关,所以中断需要我们自己来处理一些方面,但是这也是很少的一部分,很多公用的处理函数内核已经实现,linux内核搭建了一个非常容易扩充的中断处理体系. 中 断系统结构涉及的方面很多,而且分布在很多的函数中,这里我主要理清一些结构和流程顺序已经在哪些函数中实现,我不知道其他人怎么样?但是我自己一开始怎 是找不到linux内核是怎么把GPIO设置成中断的,我找了很久都找不到,还有我们很多的设置,初始化等等东西好像

CentOS开机流程详解

CentOS开机流程详解 一.linux开机流程: BIOS:(Basic Input Output System)基本输入输出系统,它是一组固化到计算机内主板上一个ROM芯片 上的程序,保存着计算机最重要的基本输入输出的程序.开机后自检程序和系统自启动程序,可从CMOS中读写系统设置的具体信息. MBR:Master Boot Record,主要引导记录区. Boot Loader:启动引导程序. 二.详细流程 第一步:加载BIOS 打开计算机电源,计算机硬件会自动加载BIOS,读取BIOS内