二值化方法:Minimum Error Thresholding

Kittler二值化方法,是一种经典的基于直方图的二值化方法。由Kittler在1986年在论文“Minimum Error Thresholding”提出。

参考了ImageShop提供的C#版本(http://www.cnblogs.com/Imageshop/p/3307308.html),做了简单修改得到了C++版本的,代码如下:

/*灰度图像的二值化方法*/
class CxThreshold
{
public:
    static int CalcKittlerMinError(int* HistGram)
    {
        int X, Y;
        int MinValue, MaxValue;
        int Threshold ;
        long PixelBack, PixelFore;
        double OmegaBack, OmegaFore, MinSigma, Sigma, SigmaBack, SigmaFore;
        for (MinValue = 0; MinValue < 256 && HistGram[MinValue] == 0; MinValue++) ;
        for (MaxValue = 255; MaxValue > MinValue && HistGram[MinValue] == 0; MaxValue--) ;
        if (MaxValue == MinValue) return MaxValue;          // 图像中只有一个颜色
         if (MinValue + 1 == MaxValue) return MinValue;      // 图像中只有二个颜色
         Threshold = -1;
        MinSigma = 1E+20;
        for (Y = MinValue; Y < MaxValue; Y++){
            PixelBack = 0; PixelFore = 0;
            OmegaBack = 0; OmegaFore = 0;
            for (X = MinValue; X <= Y; X++){
                PixelBack += HistGram[X];
                OmegaBack = OmegaBack + X * HistGram[X];
            }
            for (X = Y + 1; X <= MaxValue; X++){
                PixelFore += HistGram[X];
                OmegaFore = OmegaFore + X * HistGram[X];
            }
            OmegaBack = OmegaBack / PixelBack;
            OmegaFore = OmegaFore / PixelFore;
            SigmaBack = 0; SigmaFore = 0;
            for (X = MinValue; X <= Y; X++) SigmaBack = SigmaBack + (X - OmegaBack) * (X - OmegaBack) * HistGram[X];
            for (X = Y + 1; X <= MaxValue; X++) SigmaFore = SigmaFore + (X - OmegaFore) * (X - OmegaFore) * HistGram[X];
            if (SigmaBack == 0 || SigmaFore == 0){
                if (Threshold == -1)Threshold = Y;
            }
            else{
                SigmaBack = sqrt(SigmaBack / PixelBack);
                SigmaFore = sqrt(SigmaFore / PixelFore);
                Sigma = 1 + 2 * (PixelBack * log(SigmaBack / PixelBack) + PixelFore * log(SigmaFore / PixelFore));
                if (Sigma < MinSigma){
                    MinSigma = Sigma;
                    Threshold = Y;
                }
            }
        }
        return Threshold;
    }
};
时间: 2024-11-08 21:52:31

二值化方法:Minimum Error Thresholding的相关文章

一维最大熵二值化方法

static int Get1DMaxEntropyThreshold(const int* HistGram, int const in_Start, int const in_End) { int X, Y, Amount = 0; double HistGramD[256]; double SumIntegral, EntropyBack, EntropyFore, MaxEntropy; int MinValue = in_Start, MaxValue = in_End; int Th

二值法方法综述及matlab程序

在某些图像处理当中一个关键步是二值法,二值化一方面能够去除冗余信息,另一方面也会使有效信息丢失.所以有效的二值化算法是后续的处理的基础.比如对于想要最大限度的保留下面图的中文字,以便后续的定位处理. 二值化算法包括全局二值化和局部二值化, 全局二值化具有速度快但效果相对差的特点, 局部二值化算法具有速度慢效果好的特点. 原图 全局阈值              方法一:直接采用im2bw ;手动阈值 方法二:迭代法求阈值 迭代式阈值选取的基本思路是:首先根据图像中物体的灰度分布情况,选取一个近似

一种超级快速的图像二值化技术

在计算机视觉中,对图像进行二值化恐怕是最常见的操作了.为了检测目标,可能需要对每一帧图像的每一个像素点进行运算.如果能提升二值化的速度,那么,你的算法的效率就会大大的提高.本文,将介绍一种超级快速的图像二值化技术. 要解决的问题: 如上图所示,需要把彩色图像中, (1) R通道介于(smoevalue1, somevalue2)(2) G通道介于(somevalue3, somevalue4)(3) B通道介于(somevalue5, somevalue6)当图像中某个像素点同时满足上面3个条件

二值化函数cvThreshold()参数CV_THRESH_OTSU的疑惑【转】

查看OpenCV文档cvThreshold(),在二值化函数cvThreshold(const CvArr* src, CvArr* dst, double threshold, double max_value, int threshold_type)中,参数threshold_type有5种类型: THRESH_BINARY THRESH_BINARY_INV THRESH_TRUNC THRESH_TOZERO THRESH_TOZERO_INV 问题来了:为什么可以在threshold_

数学思想方法-python计算战(8)-机器视觉-二值化

二值化 hreshold Applies a fixed-level threshold to each array element. C++: double threshold(InputArray src, OutputArray dst, double thresh, doublemaxval, int type) Python: cv2.threshold(src, thresh, maxval, type[, dst]) → retval, dsthighlight=cvthresho

连续数值变量的一些特征工程方法:二值化、多项式、数据倾斜处理

二值化处理:将细粒度的度量转化成粗粒度的度量,使得特征的差异化更大. from sklearn.datasets import load_iris import pandas as pd X,y = load_iris(return_X_y=True) df_X = pd.DataFrame(X,columns=list("ABCD")) from sklearn.preprocessing import Binarizer df_X["A"].describe()

十三种基于直方图的图像全局二值化算法原理、实现、代码及效果(转)

十三种基于直方图的图像全局二值化算法原理.实现.代码及效果(转) http://www.cnblogs.com/carekee/articles/3643394.html 图像二值化的目的是最大限度的将图象中感兴趣的部分保留下来,在很多情况下,也是进行图像分析.特征提取与模式识别之前的必要的图像预处理过程.这个看似简单的问题,在过去的四十年里受到国内外学者的广泛关注,产生了数以百计的阈值选取方法,但如同其他图像分割算法一样,没有一个现有方法对各种各样的图像都能得到令人满意的结果. 在这些庞大的分

图像处理之基于Otsu阈值二值化

图像处理之基于Otsu阈值实现图像二值化 一:基本原理 该方法是图像二值化处理常见方法之一,在Matlab与OpenCV中均有实现. Otsu Threshing方法是一种基于寻找合适阈值实现二值化的方法,其最重 要的部分是寻找图像二值化阈值,然后根据阈值将图像分为前景(白色) 或者背景(黑色).假设有6x6的灰度图像,其像素数据及其对应的直方 图如下图: 阈值寻找方法首先假设是为T=3,则背景像素的比重.均值.方差的计算 结果如下: 根据前景像素直方图,计算比重.均值.方差的过程如下: 上述整

基于直方图的图像二值化算法实现

引言 图像二值化的目的是最大限度的将图象中感兴趣的部分保留下来,在很多情况下,也是进行图像分析.特征提取与模式识别之前的必要的图像预处理过程.在过去年里受到国内外学者的广泛关注,产生了数以百计的阈值选取方法,但如同其他图像分割算法一样,没有一个现有方法对各种各样的图像都能得到令人满意的结果. 在分类方法中,基于直方图的全局二值算法都从不同的科学层次提出了各自的实施方案,并且这类方法都有着一些共同的特点:简单.算法容易实现和执行速度快. 算法代码 第一种方法Huang L.-K et al.参考代