C实现通用数据结构--双向链表

双向链表概述

双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继next和直接前驱prev。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。为了标识链表的头和尾,将第一个元素的prev指针和最后一个元素的next指针设置为NULL

要反向遍历整个双向链表,使用prev指针从尾到头的顺序访问各个元素,因此为每个元素增加了一个指针的代价,换来的是双向链表更加灵活的访问。

本文地址:http://www.cnblogs.com/archimedes/p/c-datastruct-dlinklist.html,转载请注明源地址。

双向链表接口的定义

1、dlist_init

void dlist_init(DList *list, void (*destroy)(void *data));

描述:初始化由list指定的双向链表,该操作应该在其他操作之前进行。当调用dlist_destory时,这里传入的参数提供了一种释放动态分配空间的方法

复杂度:O(n)

2、dlist_destroy

void dlist_destroy(DList *list);

描述:销毁由list指定的双向链表,该操作之后其他操作不能进行。除非重新调用dlist_init

复杂度:O(n)

3、dlist_ins_next

int dlist_ins_next(DList *list, DListElmt *element, const void *data);

描述:将元素插入到由list指定的双链表中element元素之后,当链表为空的时候,element为NULL,新的元素包含一个指向data的指针,如果插入成功返回1,否则返回-1

复杂度:O(1)

4、dlist_ins_prev

int dlist_ins_prev(DList *list, DListElmt *element, const void *data);

描述:将元素插入到由list指定的双链表中element元素的前面,当链表为空的时候,element为NULL,新的元素包含一个指向data的指针,如果插入成功返回0,否则返回-1

复杂度:O(1)

5、dlist_remove

int dlist_remove(DList *list, DListElmt *element, void **data);

描述:移除由list指定的双链表中element元素,移除操作成功返回0,否则返回-1

复杂度:O(1)

6、dlist_size

int dlist_size(const DList *list);

描述:这是一个宏,用来计算双链表中元素的个数

复杂度:O(1)

7、dlist_head

DListElmt *dlist_head(const DList *list);

描述:这是一个宏,用来返回由list指定的双链表的头结点

复杂度:O(1)

8、dlist_tail

DListElmt dlist_tail(const DList *list);

描述:这是一个宏,用来返回由list指定的双链表的尾结点

复杂度:O(1)

9、dlist_is_head

int dlist_is_head(const DListElmt *element);

描述:这是一个宏,用来判断由element元素指定的元素是否为头结点,如果是返回1,否则返回0

复杂度:O(1)

10、dlist_is_tail

int dlist_is_tail(const DListElmt *element);

描述:这是一个宏,用来判断由element元素指定的元素是否为尾结点,如果是返回0,否则返回-1

复杂度:O(1)

11、dlist_data

void *dlist_data(const DListElmt *element);

描述:这是一个宏,用来返回由element元素指定的元素的数据域

复杂度:O(1)

12、dlist_next

DListElemt *dlist_next(const DListElmt *element);

描述:这是一个宏,用来返回由element元素指定的元素的后继结点,如果是返回0,否则返回-1

复杂度:O(1)

13、dlist_prev

DListElemt *dlist_prev(const DListElmt *element);

描述:这是一个宏,用来返回由element元素指定的元素的前驱结点,如果是返回0,否则返回-1

复杂度:O(1)

双向链表的实现和分析

抽象数据类型的头文件(list.h):

typedef struct DListElmt_ {  //为双链表结点建立结构

    void               *data;   //指向结点的数据域
    struct DListElmt_  *prev;   //指向结点的前驱结点
    struct DListElmt_  *next;   //指向结点的前驱结点
} DListElmt;

typedef struct DList_ {   //建立双链表结构

    int                size;    //元素个数
    int                (*match)(const void *key1, const void *key2);   匹配函数
    void               (*destroy)(void *data);     析构函数

    DListElmt          *head;  //指向头结点
    DListElmt          *tail;  //指向尾结点
} DList;

//公共接口

void dlist_init(DList *list, void (*destroy)(void *data));

void dlist_destroy(DList *list);

int dlist_ins_next(DList *list, DListElmt *element, const void *data);

int dlist_ins_prev(DList *list, DListElmt *element, const void *data);

int dlist_remove(DList *list, DListElmt *element, void **data);

#define dlist_size(list) ((list)->size)

#define dlist_head(list) ((list)->head)

#define dlist_tail(list) ((list)->tail)

#define dlist_is_head(element) ((element)->prev == NULL ? 1 : 0)

#define dlist_is_tail(element) ((element)->next == NULL ? 1 : 0)

#define dlist_data(element) ((element)->data)

#define dlist_next(element) ((element)->next)

#define dlist_prev(element) ((element)->prev)

#endif

初始化双向链表:

void dlist_init(DList *list, void (*destroy)(void *data)) {  //初始化list
    list->size = 0;
    list->destroy = destroy;
    list->head = NULL;
    list->tail = NULL;
    return;
}

回收双向链表:

void dlist_destroy(DList *list) {
    void *data;
    //移除每个元素
    while (dlist_size(list) > 0) {
        if (dlist_remove(list, dlist_tail(list), (void **)&data) == 0 && list->destroy != NULL) {
               //调用一个用户自定义的函数释放动态分配的内存
            list->destroy(data);
        }
    }
    //现在没有操作了,释放结构体作为预防措施
    memset(list, 0, sizeof(DList));
    return;
}

插入新节点作为指定结点的直接后继结点:

参考如下示意图:

//插入指定元素的后继
int dlist_ins_next(DList *list, DListElmt *element, const void *data) {
    DListElmt *new_element;
    //不允许element元素为NULL,除非list为空.
    if (element == NULL && dlist_size(list) != 0)
       return -1;
    //为element分配空间
    if ((new_element = (DListElmt *)malloc(sizeof(DListElmt))) == NULL)
       return -1;

    //向链表中插入元素
    new_element->data = (void *)data;
    if (dlist_size(list) == 0) {
           //当链表为NULL的时候,插入到头结点
        list->head = new_element;
        list->head->prev = NULL;
        list->head->next = NULL;
        list->tail = new_element;
    } else {
           //当链表非空的时候
        new_element->next = element->next;
        new_element->prev = element;
        if (element->next == NULL)
            list->tail = new_element;
        else
            element->next->prev = new_element;
        element->next = new_element;
    }
    //调整链表长度
    list->size++;
    return 0;
}

插入新节点作为指定结点的直接前驱结点:

//插入指定元素的前驱
int dlist_ins_prev(DList *list, DListElmt *element, const void *data) {

    DListElmt *new_element;
    if (element == NULL && dlist_size(list) != 0)   //不允许element元素为NULL,除非list为空.
        return -1;
    if ((new_element = (DListElmt *)malloc(sizeof(DListElmt))) == NULL)   //为element分配空间
        return -1;

    //向链表中插入元素
    new_element->data = (void *)data;
    if (dlist_size(list) == 0) {
        //当链表为NULL的时候,插入到头结点
        list->head = new_element;
        list->head->prev = NULL;
         list->head->next = NULL;
        list->tail = new_element;

    } else {
         //当链表非空的时候插入
        new_element->next = element;
        new_element->prev = element->prev;
        if (element->prev == NULL)
            list->head = new_element;
           else
            element->prev->next = new_element;
        element->prev = new_element;
    }
    //调整链表长度
    list->size++;
    return 0;
}

删除指定结点:

//删除指定结点
int dlist_remove(DList *list, DListElmt *element, void **data) {

    //不允许删除NULL元素或从空表中删除元素
    if (element == NULL || dlist_size(list) == 0)
        return -1;

    //从表中删除元素
    *data = element->data;

    if (element == list->head) {
       //删除表头结点
        list->head = element->next;
        if (list->head == NULL)  //如果element元素是尾结点
            list->tail = NULL;
        else
            element->next->prev = NULL;
    } else {

        //删除表中的结点
        element->prev->next = element->next;
        if (element->next == NULL)
            list->tail = element->prev;
        else
            element->next->prev = element->prev;
    }
    //释放已经分配的结点
    free(element);
    //调整表长
    list->size--;
    return 0;
}
时间: 2024-08-13 03:10:05

C实现通用数据结构--双向链表的相关文章

一步一步写算法(之通用数据结构)

原文:一步一步写算法(之通用数据结构) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 上一篇博客介绍了通用算法,那么有了这个基础我们可以继续分析通用数据结构了.我们知道在c++里面,既有数据又有函数,所以一个class就能干很多事情.举一个简单的例子来说,我们可以编写一个数据的class计算类. class calculate{ int m; int n; public: calculate():m(0),n(0) {} calcula

C语言实现通用数据结构的高效设计

最近在阅读一个开源的C++代码,里面用到了大量的STL里面的东西.也许是自己一直用C而很少用C++来实现算法的原因,STL里面大量的模板令人心烦.一直对STL的效率表示怀疑,但在网上搜到这样一个帖子,说C的标准库里面快速排序比STL的标准排序要慢!于是,便认真的看了下二者的源码.其实两个使用的算法是完全类似的,而C标准库里面的qsort之所以比std::sort慢,是因为C语言中为了适配所有的数据结构使用了空指针.下面以更为简单的插入排序为例说明这个问题. 插入排序的算法实现代码: void i

Linux 通用数据结构说明

device_driver include/linux/device.h struct device_driver { const char             * name; /* 驱动名称 */ struct bus_type        * bus;  /* 总线类型 */ struct completion      unloaded;  /* 卸载事件通知机制 */ struct kobject                      kobj; /* sys 中的对象 */

数据结构——双向链表的实现

双向链表主要为了解决单链表找前驱的问题.除了插入.删除操作之外,其他操作与单链表都相同.因此这里只是比较简单的写了双向链表的插入和删除操作.画出结点结构图的话,思路会很清晰,线性表这块还算是比较简单的能够实现. 1 /* 2 在单链表中,求后继的方法NextElem执行的时间为O(1),求前驱的方法PriorElem执行的时间为O(n), 3 引入双向链表就是为了克服单链表这种单向性的缺点. 4 */ 5 6 #include<stdio.h> 7 #include<stdlib.h&g

数据结构 双向链表 C语言实现

dlist.h 1 #ifndef __dList_H 2 #define __dlist_H 3 4 typedef int Item; 5 typedef struct Node *PNode; 6 typedef PNode Position; 7 /*定义节点类型*/ 8 typedef struct Node 9 { 10 Item data; /*数据域*/ 11 PNode previous; /*指向前驱*/ 12 PNode next; /*指向后继*/ 13 }Node; 1

数据结构-双向链表

为了解决对链表操作的灵活性,把单链表的单一指向改为双向驱动,从而形成双向链表.Java的LinkedList就是双向链表的实现,但是因为有双端队列的成分,显得有些不单纯. ■双向链表的节点定义 private static class Node<E> { E item; Node<E> next; Node<E> prev; Node(Node<E> prev, E element, Node<E> next) { this.item = ele

Linux内核分析--内核中的数据结构双向链表续【转】

在解释完内核中的链表基本知识以后,下面解释链表的重要接口操作: 1. 声明和初始化 实际上Linux只定义了链表节点,并没有专门定义链表头,那么一个链表结构是如何建立起来的呢?让我们来看看LIST_HEAD()这个宏: #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) struct list_head name = LIST_HEAD_INIT(name) 需要注意的是,Linux 的每个双循

喜羊羊系列之数据结构双向链表

博客:http://blog.csdn.net/muyang_ren 关于双向链表的原理很多都有说明,我这只是与前面的内核链表作个对比,同样实现数据的增删差改. 截图: 1.main.c #include "doublelist.h" int main(void) { int num, i; double_plist list; doublelist_init(&list); //初始化双向链表 printf("\n请输入链表长度:"); scanf(&qu

数据结构 - 双向链表(C++)

// ------DoublyLinkedList.h------ template <class T> class DNode { private: // 指向左.右结点的指针 DNode<T> * left; DNode<T> * right; public: // data为公有成员 T data; // 构造函数 DNode(void); DNode(const T& item); // 改变表的方法 void InsertRight(DNode<