无锁算法CAS 概述

无锁算法CAS 概述

  JDK5.0以后的版本都引入了高级并发特性,大多数的特性在java.util.concurrent包中,是专门用于多线并发编程的,充分利用了现代多处理器和多核心系统的功能以编写大规模并发应用程序。主要包含原子量、并发集合、同步器、可重入锁,并对线程池的构造提供了强力的支持。

  原子量是定义了支持对单一变量执行原子操作的类。所有类都有get和set方法,工作方法和对volatile变量的读取和写入一样。并发集合是原有集合框架的补充,为多线程并发程序提供了支持。主要有:BlockingQueue,ConcurrentMap,ConcurrentNavigableMap。

  同步器提供了一些帮助在线程间协调的类,包括semaphores,barriers,latches, exchangers等。

  一般同步代码依靠内部锁(隐式锁),这种锁易于使用,但是有很多局限性。新的Lock对象支持更加复杂的锁定语法。和隐式锁类似,每一时刻只有一个线程能够拥有Lock对象,通过与其相关联的Condition对象,Lock对象也支持wait和notify机制。

  线程完成的任务(Runnable对象)和线程对象(Thread)之间紧密相连。适用于小型程序,在大型应用程序中,把线程管理和创建工作与应用程序的其余部分分离开更有意义。线程池封装线程管理和创建线程对象。

1.原子量

  近来关于并发算法的研究主要焦点是无锁算法(nonblocking algorithms),这些无锁算法使用低层原子化的机器指令,例如使用compare-and-swap(CAS)代替锁保证并发情况下数据的完整性。无锁算法广泛应用于操作系统与JVM中,比如线程和进程的调度、垃圾收集、实现锁和其他并发数据结构。

  在 JDK5.0 之前,如果不使用本机代码,就不能用 Java 语言编写无等待、无锁定的算法。在 java.util.concurrent 中添加原子变量类之后,这种情况发生了变化。本节了解这些新类开发高度可伸缩的无阻塞算法。

  要使用多处理器系统的功能,通常需要使用多线程构造应用程序。但是正如任何编写并发应用程序的人可以告诉你的那样,要获得好的硬件利用率,只是简单地在多个线程中分割工作是不够的,还必须确保线程确实大部分时间都在工作,而不是在等待更多的工作,或等待锁定共享数据结构。

  如果线程之间不需要协调,那么几乎没有任务可以真正地并行。以线程池为例,其中执行的任务通常相互独立。如果线程池利用公共工作队列,则从工作队列中删除元素或向工作队列添加元素的过程必须是线程安全的,并且这意味着要协调对头、尾或节点间链接指针所进行的访问。正是这种协调导致了所有问题。

2.锁同步法

  在 Java 语言中,协调对共享字段访问的传统方法是使用同步,确保完成对共享字段的所有访问,同时具有适当的锁定。通过同步,可以确定(假设类编写正确)具有保护一组访问变量的所有线程都将拥有对这些变量的独占访问权,并且以后其他线程获得该锁定时,将可以看到对这些变量进行的更改。弊端是如果锁定竞争太厉害(线程常常在其他线程具有锁定时要求获得该锁定),会损害吞吐量,因为竞争的同步非常昂贵。对于现代 JVM 而言,无竞争的同步现在非常便宜。

  基于锁的算法的另一个问题是:如果延迟具有锁的线程(因为页面错误、计划延迟或其他意料之外的延迟),则没有要求获的锁的线程可以继续运行。

  还可以使用volatile变量来以比同步更低的成本存储共享变量,但它们有局限性。虽然可以保证其他变量可以立即看到对volatile变量的写入,但无法呈现原子操作的读-修改-写顺序,这意味着volatile变量无法用来可靠地实现互斥(互斥锁定)或计数器。

  下面以实现一个计数器为例。通常情况下一个计数器要保证计数器的增加,减少等操作需要保持原子性,使类成为线程安全的类,从而确保没有任何更新信息丢失,所有线程都看到计数器的最新值。使用内部锁实现的同步代码一般如下:

  

package snippet;

public class SynchronizedCounter {
    private int value;

    public synchronized int getValue() {
        return value;
    }

    public synchronized int increment() {
        return ++value;
    }

    public synchronized int decrement() {
        return --value;
    }
}

  increment() 和 decrement() 操作是原子的读-修改-写操作,为了安全实现计数器,必须使用当前值,并为其添加一个值,或写出新值,所有这些均视为一项操作,其他线程不能打断它。否则,如果两个线程试图同时执行增加,操作的不幸交叉将导致计数器只被实现了一次,而不是被实现两次。(注意,通过使值变量成为volatile变量并不能可靠地完成这项操作。)

  计数器类可以可靠地工作,在竞争很小或没有竞争时都可以很好地执行。然而,在竞争激烈时,这将大大损害性能,因为JVM用了更多的时间来调度线程,管理竞争和等待线程队列,而实际工作(如增加计数器)的时间却很少。

  使用锁,如果一个线程试图获取其他线程已经具有的锁,那么该线程将被阻塞,直到该锁可用。此方法具有一些明显的缺点,其中包括当线程被阻塞来等待锁时,它无法进行其他任何操作。如果阻塞的线程是高优先级的任务,那么该方案可能造成非常不好的结果(称为优先级倒置的危险)。

  使用锁还有一些其他危险,如死锁(当以不一致的顺序获得多个锁时会发生死锁)。甚至没有这种危险,锁也仅是相对的粗粒度协调机制,同样非常适合管理简单操作,如增加计数器或更新互斥拥有者。如果有更细粒度的机制来可靠管理对单独变量的并发更新,则会更好一些;在大多数现代处理器都有这种机制。

3.比较并交换  

  大多数现代处理器都包含对多处理的支持。当然这种支持包括多处理器可以共享外部设备和主内存,同时它通常还包括对指令系统的增加来支持多处理的特殊要求。特别是,几乎每个现代处理器都有通过可以检测或阻止其他处理器的并发访问的方式来更新共享变量的指令

  现在的处理器(包括 Intel 和 Sparc 处理器)使用的最通用的方法是实现名为“比较并交换(Compare And Swap)”或 CAS 的原语。(在 Intel 处理器中,比较并交换通过cmpxchg 系列指令实现。PowerPC 处理器有一对名为“加载并保留”和“条件存储”的指令,它们实现相同的目地;MIPS 与 PowerPC 处理器相似,除了第一个指令称为“加载链接”。

  CAS 操作包含三个操作数—— 内存位置(V)、预期原值(A)和新值(B)。如果内存位置的值与预期原值相匹配,那么处理器会自动将该位置值更新为新值。否则,处理器不做任何操作。无论哪种情况,它都会在 CAS 指令之前返回该位置的值。(在 CAS 的一些特殊情况下将仅返回 CAS 是否成功,而不提取当前值。)CAS 有效地说明了“我认为位置 V 应该包含值 A;如果包含该值,则将 B 放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。”

  通常将 CAS 用于同步的方式是从地址 V 读取值 A,执行多步计算来获得新值 B,然后使用 CAS 将 V 的值从 A 改为 B。如果 V 处的值尚未同时更改,则 CAS 操作成功。

  类似于 CAS 的指令允许算法执行读-修改-写操作,而无需害怕其他线程同时修改变量,因为如果其他线程修改变量,那么 CAS 会检测它(并失败),算法可以对该操作重新计算。下面的程序说明了 CAS 操作的行为(而不是性能特征),但是 CAS 的价值是它可以在硬件中实现,并且是极轻量级的(在大多数处理器中)。后面我们分析Java的源代码可以知道,JDK在实现的时候使用了本地代码。下面的代码说明CAS的工作原理(为了便于说明,用同步语法表示)。

  

public class SimulatedCAS {
    private int value;

    public synchronized int getValue() {
        return value;
    }

    public synchronized int compareAndSwap(int expectedValue, int newValue) {
        if (value == expectedValue)
            value = newValue;
        return value;
    }
}

  基于 CAS 的并发算法称为“无锁定算法”,因为线程不必再等待锁定(有时称为互斥或关键部分,这取决于线程平台的术语)。无论 CAS 操作成功还是失败,在任何一种情况中,它都在可预知的时间内完成。如果 CAS 失败,调用者可以重试 CAS 操作或采取其他适合的操作。下面的代码显示了重新编写的计数器类来使用 CAS 替代锁定:

class CasCounter {
    private SimulatedCAS value;

    public int getValue() {
        return value.getValue();
    }

    public int decrement() {
        int oldValue = value.getValue();
        while (value.compareAndSwap(oldValue, oldValue + 1) != oldValue)
            oldValue = value.getValue();
        return oldValue + 1;
    }
}

  如果每个线程在其他线程任意延迟(或甚至失败)时都将持续进行操作,就可以说该算法是"无等待" 的. "无锁定算法" 要求某个线程总是执行操作. (无等待的另一种定义是保证每个线程在其有限的步骤中正确计算自己的操作,而不管其他线程的操作,计时,交叉过速度,这一限制可以是系统中线程数的函数: 例如 , 如果有10个线程,每个线程都执行一次 CasCounter.increment() 操作, 最坏的情况下每个线程将必须重试最多9次才能成功增加,)

  无阻塞算法被广泛用于操作系统和JVM级别,进行诸如线程和进程调度等任务,虽然无锁算法的实现比较复杂,但相对于基于锁的备选算法,它们有许多优点:可以避免优先级倒置和死锁等危险,竞争比较便宜,协调发生在更细的粒度级别,允许更高程度的并行机制等等 ...

时间: 2024-10-12 07:45:03

无锁算法CAS 概述的相关文章

非阻塞同步算法与CAS(Compare and Swap)无锁算法

CAS无锁算法 要实现无锁(lock-free)的非阻塞算法有多种实现方法,其中CAS(比较与交换,Compare and swap)是一种有名的无锁算法.CAS, CPU指令,在大多数处理器架构,包括IA32.Space中采用的都是CAS指令,CAS的语义是"我认为V的值应该为A,如果是,那么将V的值更新为B,否则不修改并告诉V的值实际为多少",CAS是项乐观锁技术,当多个线程尝试使用CAS同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起

具体CAS操作实现(无锁算法)

具体CAS操作 上一篇讲述了CAS机制,这篇讲解CAS具体操作. 什么是悲观锁.乐观锁?在java语言里,总有一些名词看语义跟本不明白是啥玩意儿,也就总有部分面试官拿着这样的词来忽悠面试者,以此来找优越感,其实理解清楚了,这些词也就唬不住人了. synchronized是悲观锁,这种线程一旦得到锁,其他需要锁的线程就挂起的情况就是悲观锁. CAS操作的就是乐观锁,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止. 那么问题来了,什么是CAS操作? CAS是Comp

017 无锁与CAS

一 . 概述 我们知道加锁会对多线程的并发有影响,那么我们是否有无锁的方式保证线程的安全性呢?有的,就是CAS方式. CAS的核心就是乐观的尝试,将线程的阻塞变成了线程的尝试,认为即使在不断尝试的代价也比阻塞后唤醒的代价要小. 二 CAS CAS到底是什么呢? 其实就是一个JVM的指令,其中这个指令的执行是原子性的,也就是说不会被打断. 我们看下AtomicInter的原子实现: public final boolean compareAndSet(int expect, int update)

面试必备:CAS无锁机制

CAS无锁机制原理,面试高频问题之一,其实,日常开发中并不会直接使用CAS无锁机制,都是通过一系列封装好的工具类来使用, 说不定面试官不提问,都不知道有这么个东西存在. 1.能说一下你对CAS的理解吗? 参考回答: 通常我们提到保证多线程安全,会想到三种方式,一是使用Synchronize关键字,但是有个问题就是,使用了Synchronize加锁后的多线程相当于串行,执行效率并不是太高,所以在高并发场景下,使用第二种方式Lock锁,Lock锁要比使用Synchronize关键字在性能上有极大的提

加锁并发算法 vs 无锁并发算法

Heinz Kabutz 在上周举办了一次成功 JCrete研讨会,我在会上参加了对一种新的 StampedLock(于JSR166中 引入) 进行的评审.StampedLock (邮戳锁) 旨在解决系统中共享资源的争用问题.在一个系统中,如果多个需要读写某一共享状态的程序并发访问这个共享对象时,争用问题就产生了.在设计 上,StampedLock 试图通过一种“乐观读取”的方式来减小系统开销,从而提供比 ReentrantReadWriteLock(重入读写锁) 更好的性能. 在评审过程中,我

无锁编程与有锁编程的性能对比与分析

最近维护的一个网络服务器遇到性能问题,于是就对原有的程序进行了较大的框架改动.改动最多的是线程工作模式与数据传递方式,最终的结果是改变锁的使用模式.经过一番改进,基本上可以做到 GMb 网卡全速工作处理.在 性能达标之后,一度在想有没有什么办法使用更加轻量级锁,或者去掉锁的使用,为此搜索一些相关的研究成果,并做了一些实验来验证这些成果,因而就有这篇文章.希望有做类似工作的同行可以有所借鉴.如果有人也有相关的经验,欢迎和我交流. 1 无锁编程概述 本节主要对文献 [1] 进行概括,做一些基础知识的

Java高并发-无锁

一.无锁类的原理 1.1 CAS CAS算法的过程是这样:它包含3个参数CAS(V,E,N).V表示要更新的变量,E表示预期值,N表示新值.仅当V值等于E值时,才会将V的值设为N,如果V值和E值不同,则说明已经有其他线程做了更新,则当前线程什么都不做.最后,CAS返回当前V的真实值 .CAS操作是抱着乐观的态度进行的,它总是认为自己可以成功完成操作.当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败.失败的线程不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许

谈谈存储软件的无锁设计

面向磁盘设计的存储软件不需要考虑竞争锁带来的性能影响.磁盘存储软件的性能瓶颈点在于磁盘,磁盘抖动会引入极大的性能损耗.因此,传统存储软件的设计不会特别在意处理器的使用效率.曾经对一个存储虚拟化软件进行性能调优,在锁竞争方面做了大量优化,最后也没有达到性能提升的效果,原因就在于存储虚拟化的性能瓶颈点在于磁盘,而不在于处理器的使用效率.正因为如此,在面向磁盘设计的软件中,很多都采用单线程.单队列处理的方式,一定程度上还可以避免由于并发所引入的磁盘抖动问题. 在面向NVMe SSD设计的存储软件中,这

Java高并发之无锁与Atomic源码分析

目录 CAS原理 AtomicInteger Unsafe AtomicReference AtomicStampedReference AtomicIntegerArray AtomicIntegerFieldUpdater 无锁的Vector 无锁即无障碍的运行, 所有线程都可以到达临界区, 接近于无等待. 无锁采用CAS(compare and swap)算法来处理线程冲突, 其原理如下 CAS原理 CAS包含3个参数CAS(V,E,N).V表示要更新的变量, E表示预期值, N表示新值.