BZOJ 2440 完全平方数 (容斥+莫比乌斯反演+二分)

2440: [中山市选2011]完全平方数

Time Limit: 10 Sec  Memory Limit:
128 MB

Submit: 1673  Solved: 799

[Submit][Status][Discuss]

Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些

数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而

这丝毫不影响他对其他数的热爱。

这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一

个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了

小X。小X很开心地收下了。

然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试

数据的组数。

第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的

第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4

1

13

100

1234567

Sample Output

1

19

163

2030745

HINT

对于 100%的数据有 1 ≤ Ki ≤ 10^9,  T ≤ 50

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440

题目分析:题目要求第k个无平方因子数,我们显然不可能把答案都求出来再查询,这个数据范围首先想到的是二分,对于第1-n的无平方因子数我们可以用容斥定理得到,拿总的个数减去4的倍数(-n/4个),减去9的倍数(-n/9个),但是36既是4的倍数又是9的倍数,被减了两次,要加回来(+n/36),这样容斥就出来了,前面的符号正好和数字开根号后对应的莫比乌斯函数相同,这样问题就简单了,还有一点要说明的是二分的上界开多大,这个也影响着莫比乌斯函数要开多大,我们不妨假设第k个无平方因子数不会超过2k,具体证明我也不会,但是最小的平方因子是4,也就是说每4个数里必然有一个是平方因子数,同时因为平方因子越往后越大,可以yy出平均每四个数有不超过两个平方因子数这个结论,所以第k个无平方因子数不会超过2k,(其实打表也可验证),所以二分上界取2k+1即可,莫比乌斯函数开sqrt(2e9)差不多5e4的样子

1000ms过

#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
int const MAX = 5e4;
ll const INF = 2e9;
int mob[MAX], p[MAX];
bool prime[MAX];

void Mobius()
{
    int pnum = 0;
    memset(prime, true, sizeof(prime));
    mob[1] = 1;
    for(int i = 2; i < MAX; i++)
    {
        if(prime[i])
        {
            p[pnum ++] = i;
            mob[i] = -1;
        }
        for(int j = 0; j < pnum && i * p[j] < MAX; j++)
        {
            prime[i * p[j]] = false;
            if(i % p[j] == 0)
            {
                mob[i * p[j]] = 0;
                break;
            }
            mob[i * p[j]] = -mob[i];
        }
    }
}

ll cal(int mid)
{
    ll pos = 0;
    for(int i = 1; i * i <= mid; i++)
        pos += (ll) mob[i] * (mid / (i * i));
    return pos;
}

int main()
{
    Mobius();
    int T;
    scanf("%d", &T);
    while(T--)
    {
        ll k;
        scanf("%lld", &k);
        ll l = 1, r = 2 * k + 1;
        while(l <= r)
        {
            ll mid = (l + r) >> 1;
            if(cal(mid) < k)
                l = mid + 1;
            else
                r = mid - 1;
        }
        printf("%lld\n", l);
    }
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-28 21:56:39

BZOJ 2440 完全平方数 (容斥+莫比乌斯反演+二分)的相关文章

【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数

Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分答案x,问题转化为求[1,x]间有多少个没有完全平方因子的数. 容斥,加上全部,减去一个质数的平方的倍数个数,加上两个质数乘积的平方的倍数个数... 然后发现,每个数的系数就是µ 这也说明了莫比乌斯的原理就是容斥,µ函数就是容斥系数 具体来说,对于每一个i<=sqrt(x),对于ans的贡献就是µ[i]

cf900D. Unusual Sequences(容斥 莫比乌斯反演)

题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显然\(g[i] = 2^{i-1}\)(插板后每空位放不放) 同时还可以枚举一下gcd,设\(f[i]\)表示满足和为\(i\)且所有数的gcd为1的方案,\(g[i] = \sum_{d | i} f[\frac{n}{d}]\) 反演一下,\(f[i] = \sum_{d | i} \mu(d)

bzoj 3622 DP + 容斥

LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[i]大于b的组数. 不妨从整体去考虑,使用$f[n][j]$代表前n个中有j组$a[i]>b[i]$,很容易得到转移式$f[n][j]=f[n-1][j]+f[n-1][j-1]*(cnt[n]-(j-1))$,其中$cnt[i]$为比a[i]小的b[]个数 但是仔细思考该式子含义会发现,$f[n][j

BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含1).求第k个非完全平方数. 思路:我们先求出[1, n]的非完全平方数的个数,然后利用二分来查找正好等于k时的n(注意这样的n可能不止一个,求最左边的).关键是,怎么求出前者,我们可以利用容斥原理,用n - [1, n]内完全平方数的个数,求[1, n]内完全平方数的个数,用容斥发现前面的系数就是

bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方案数: 我们希望得到恰好有一个连通块的方案数,但这里不能直接 \( + t[1] - t[2] + t[3] - t[4] ... \),因为每个"恰好 \( i \) 个连通块"的情况并不是在各种 \( t[j] ( j<=i ) \) 中只被算了一次,而是因为标号,被算了 \(

【bzoj4671】异或图(容斥+斯特林反演+线性基)

传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: 直接考虑判断图的连通不好判断,所以考虑枚举连通块来进行容斥. 定义\(f_i\)表示有\(i\)个连通块的答案,发现连通块这个东西也不好处理,我们只能处理出有多少个连通块,但无法确定每个连通块内部的连通关系. 定义\(g_i\)为至少有\(i\)个连通块的方案数,那么就有关系式:\(\displaystyle

BZOJ 1114 Number theory(莫比乌斯反演+预处理)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , an.求gcd(ai, aj) = 1 且 i < j的对数. 思路:利用莫比乌斯反演很快就能得到公式,但是求解时我们要知道序列中1, 2, 3, ... , max(a1, a2, ... , an)的倍数各是多少.我们用num[i]=k,来表示序列中有k个数是i的倍数,那么这部分对结果的影响是m

BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 思路:本题使用莫比乌斯反演要利用分块来优化,那么每次询问的复杂度降为2*sqrt(n)+2*sqrt(m).注意到 n/i ,在连续的k区间内存在,n/i=n/(i+k).所有对这连续的区间可以一次求出

BZOJ 2820 YY的GCD ——莫比乌斯反演

我们可以枚举每一个质数,那么答案就是 $\sum_{p}\sum_{d<=n}\mu(d)*\lfloor n / pd \rfloor *\lfloor m / pd \rfloor$ 直接做?TLE 考虑优化,由于看到了pd是成对出现的,令T=pd $ans=\sum_{T<=min(n,m)}\lfloor n / T \rfloor *\lfloor m / T \rfloor \sum_{p \mid T}\mu(T/p)$ 或者 $ans=\sum_{T<=min(n,m)}