14欧几里德、扩展欧几里德算法模板

一、欧几里德算法:即辗转相除法,用于求两个整数a,b的最大公约数

见:最大公约数模板

二、扩展欧几里德算法:对于不完全为0的非负整数a,b,gcd(a,b)表示a,b的最大公约数,必然存在整数对x,y,使得gcd(a,b)=ax+by。

kb2.3扩展欧几里德算法(求ax+by=gcd的解以及逆元)

#include<iostream>
#include<stdio.h>
using namespace std;

//返回d=gcd(a,b);和对应于等式ax+by=d中的x,y
long long extend_gcd(long long a,long long b,long long &x,long long &y){
    if(a==0&&b==0)return -1;//无最大公约数
    if(b==0){x=1;y=0;return a;}
    long long d=extend_gcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}

//求逆元
//ax=1(mod n)
long long mod_reverse(long long a,long long n){
    long long x,y;
    long long d=extend_gcd(a,n,x,y);
    if(d==1)return (x%n+n)%n;
    else return -1;
}

int main(){
    long long a,b,x,y;
    scanf("%lld%lld",&a,&b);
    long long d=extend_gcd(a,b,x,y);
    printf("%lld x=%lld y=%lld\n",d,x,y);
    return 0;
}

时间: 2024-11-07 08:33:15

14欧几里德、扩展欧几里德算法模板的相关文章

欧几里德与扩展欧几里德算法(转)

欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a

HDU 1098 Ignatius&#39;s puzzle 费马小定理+扩展欧几里德算法

题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为x可以任意取 那么不能总是满足 65|x 那么必须是 65 | (5*x^12 + 13 * x^4 + ak) 那么就是说 x^12 / 13 + x^4 / 5 + ak / 65 正好是一个整数 假设能找到满足的a , 那么将 ak / 65 分进x^12 / 13 + x^4 / 5中得到

欧几里德与扩展欧几里德算法

转自网上大牛博客,讲的浅显易懂. 原文地址:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有

Modified LCS (扩展欧几里德)细写了对这个算法思路的理解

题目:Modified LCS 为过此题去仔细研究了下扩展欧几里德算法,领悟了一些精华. 模板为: void gcd(ll a, ll b, ll& d, ll& x, ll& y) { if(!b) {d = a; x = 1; y = 0;} else{ gcd(b, a%b, d, y, x); y -= x*(a/b);} } 这里算出来的x,y是对于方程ax+by=gcd(a,b)而言的一组解. 为什么叫扩展欧几里德说明肯定用了欧几里德算法的原理即:gcd(a,b)=gc

扩展欧几里德算法及其应用

接着欧几里德算法往后写,扩展欧几里德算法常常用来解不定方程及一些相关的应用,用到的思想就是欧几里德算法的思想:通过在结果不改变的情况下不断取余而逐步缩小数据规模,两个数会不断变小,直到减小到一个数是另一个数的倍数的时候,就很容易求出他们的最小公倍数了.下面我们来说说扩展欧几里德的思想: 我们要求出 a * x + b * y = c 的所有解,其中 a,b,c 是已经告诉你的常数,而 x,y 是待求的未知量,我们要求出所有的 x,y ,其实只要求出一组 x0,y0就行了,剩下的解可以由 x=x0

数论快速入门(同余、扩展欧几里德、中国剩余定理、大素数测定和整数分解、素数三种筛法、欧拉函数以及各种模板)

数学渣渣愉快的玩了一把数论,来总结一下几种常用的算法入门,不过鶸也是刚刚入门, 所以也只是粗略的记录下原理,贴下模板,以及入门题目(感受下模板怎么用的) (PS:文中蓝色字体都可以点进去查看百度原文) 附赠数论入门训练专题:点我打开专题(题目顺序基本正常,用以配套数论入门) 一.同余定理 简单粗暴的说就是:若 a-b == m 那么 a%m == b%m 这个模运算性质一眼看出...直接上入门水题: Reduced ID Numbers 附AC代码(这个也没啥模板....知道就好) #inclu

(扩展欧几里德算法)zzuoj 10402: C.机器人

10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地蹦,但只可以在(X,Y),(X,-Y),(-X,Y),(-X,-Y),(Y,X),(Y,-X),(-Y,X),(-Y,-X)八个点跳来跳去. 现在,Dr. Kong想在机器人卡尔身上设计一个计数器,记录它蹦蹦跳跳的数字变化(S,T),即,路过的位置坐标值之和. 你能帮助Dr. Kong判断机器人能否

欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a

poj2142-The Balance(扩展欧几里德算法)

一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置之分,应对比两种情况 i,a左b右,得出方程 ax1 - by1 = d ; ii,b左a右,得出方程 bx2 - ay2 = d . 2,利用扩展欧几里德算法,解出(x1,y1).(x2,y2),并求出最小x1和x2,以及相对应的y1,y2. 3,输出x1+y1和x2+y2 中的最小值. 三,步骤