IO - 同步,异步,阻塞,非阻塞 (亡羊补牢篇)

IO - 同步,异步,阻塞,非阻塞 (亡羊补牢篇)

当你发现自己最受欢迎的一篇blog其实大错特错时,这绝对不是一件让人愉悦的事。
IO - 同步,异步,阻塞,非阻塞
》是我在开始学习epoll和libevent的时候写的,主要的思路来自于文中的那篇link
。写完之后发现很多人都很喜欢,我还是非常开心的,也说明这个问题确实困扰了很多人。随着学习的深入,渐渐的感觉原来的理解有些偏差,但是还是没引起自己
的重视,觉着都是一些小错误,无伤大雅。直到有位博友问了一个问题,我重新查阅了一些更权威的资料,才发现原来的文章中有很大的理论错误。我不知道有多少
人已经看过这篇blog并受到了我的误导,鄙人在此表示抱歉。俺以后写技术blog会更加严谨的。
一度想把原文删了,最后还是没舍得。毕竟每篇blog都花费了不少心血,另外放在那里也可以引以为戒。所以这里新补一篇。算是亡羊补牢吧。

言归正传。
同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking)
IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为
asynchronous IO和non-blocking
IO是一个东西。这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同。所以,为了更好的回答这个问题,我先
限定一下本文的上下文。
本文讨论的背景是Linux环境下的network IO。
本文最重要的参考文献是Richard Stevens的“UNIX® Network Programming Volume 1, Third Edition: The Sockets Networking
”,6.2节“I/O Models
”,Stevens在这节中详细说明了各种IO的特点和区别,如果英文够好的话,推荐直接阅读。Stevens的文风是有名的深入浅出,所以不用担心看不懂。本文中的流程图也是截取自参考文献。

Stevens在文章中一共比较了五种IO Model:
    blocking IO
    nonblocking IO
    IO multiplexing
    signal driven IO
    asynchronous IO
由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。

再说一下IO发生时涉及的对象和步骤。
对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:
 1 等待数据准备 (Waiting for the data to be ready)
 2 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)
记住这两点很重要,因为这些IO Model的区别就是在两个阶段上各有不同的情况。

blocking IO

在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network
io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整
个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除
block的状态,重新运行起来。
所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

non-blocking IO

linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个
error。从用户进程角度讲
,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次
发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system
call,那么它马上就将数据拷贝到了用户内存,然后返回。
所以,用户进程其实是需要不断的主动询问kernel数据好了没有。

IO multiplexing

IO
multiplexing这个词可能有点陌生,但是如果我说select,epoll,大概就都能明白了。有些地方也称这种IO方式为event
driven
IO。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select
/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个
socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和
recvfrom),而blocking IO只调用了一个system call
(recvfrom)。但是,用select的优势在于它可以同时处理多个connection。(多说一句。所以,如果处理的连接数不是很高的话,使用
select/epoll的web server不一定比使用multi-threading + blocking IO的web
server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)
在IO multiplexing
Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被
block的。只不过process是被select这个函数block,而不是被socket IO给block。

Asynchronous I/O

linux下的asynchronous IO其实用得很少。先看一下它的流程:

用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous
read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都
完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:blocking和non-blocking的区别在哪,synchronous IO和asynchronous IO的区别在哪。
先回答最简单的这个:blocking vs non-blocking。前面的介绍中其实已经很明确的说明了这两者的区别。调用blocking
IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

在说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:
    A synchronous I/O operation causes the requesting process to be blocked until that I/O operation
completes;
    An asynchronous I/O operation does not cause the requesting process to be blocked;

两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的blocking
IO,non-blocking IO,IO multiplexing都属于synchronous IO。有人可能会说,non-blocking
IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO
operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking
IO在执行recvfrom这个system
call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从
kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous
IO则不一样,当进程发起IO
操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

各个IO Model的比较如图所示:

经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking
IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用
recvfrom来将数据拷贝到用户内存。而asynchronous
IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的
状态,也不需要主动的去拷贝数据。

最后,再举几个不是很恰当的例子来说明这四个IO Model:
有A,B,C,D四个人在钓鱼:
A用的是最老式的鱼竿,所以呢,得一直守着,等到鱼上钩了再拉杆;
B的鱼竿有个功能,能够显示是否有鱼上钩,所以呢,B就和旁边的MM聊天,隔会再看看有没有鱼上钩,有的话就迅速拉杆;
C用的鱼竿和B差不多,但他想了一个好办法,就是同时放好几根鱼竿,然后守在旁边,一旦有显示说鱼上钩了,它就将对应的鱼竿拉起来;
D是个有钱人,干脆雇了一个人帮他钓鱼,一旦那个人把鱼钓上来了,就给D发个短信。

时间: 2024-10-08 11:14:07

IO - 同步,异步,阻塞,非阻塞 (亡羊补牢篇)的相关文章

基础入门_Python-网络编程.分分钟掌握阻塞/非阻塞/同步/异步IO模型?

概念梳理: 故事独白: 满满爱喝茶,废话不多说,开始煮开水. 出场人物: 满满, 普通水壶, 高级水壶(水开会响) 1. 满满把水壶放在火上, 站在那里等水开(同步阻塞) 满满觉得自己有点儿傻逼~ 2. 满满把水壶放在火上,去客厅看电视,时不时的去厨房瞅瞅水开木有(同步非阻塞) 满满觉得自己还是有点傻~,于是买了个高级水壶, 水开后会响~ 3. 满满把高级水壶放在火上, 站在那里等水开(异步阻塞) 满满想高级水壶水开会自己叫~为毛不去看个电视哪? 4. 满满把高级水壶放在火上, 去客厅看电视,

Java 中阻塞非阻塞io以及同步异步IO

然后借鉴下<Unix网络编程卷>中的理论: IO操作中涉及的2个主要对象为程序进程.系统内核.以读操作为例,当一个IO读操作发生时,通常经历两个步骤: 1,等待数据准备 2,将数据从系统内核拷贝到操作进程中 例如,在socket上的读操作,步骤1会等到网络数据包到达,到达后会拷贝到系统内核的缓冲区:步骤2会将数据包从内核缓冲区拷贝到程序进程的缓冲区中. 阻塞(blocking)与非阻塞(non-blocking)IO IO的阻塞.非阻塞主要表现在一个IO操作过程中,如果有些操作很慢,比如读操作

# 进程/线程/协程 # IO:同步/异步/阻塞/非阻塞 # greenlet gevent # 事件驱动与异步IO # Select\Poll\Epoll异步IO 以及selectors模块 # Python队列/RabbitMQ队列

1 # 进程/线程/协程 2 # IO:同步/异步/阻塞/非阻塞 3 # greenlet gevent 4 # 事件驱动与异步IO 5 # Select\Poll\Epoll异步IO 以及selectors模块 6 # Python队列/RabbitMQ队列 7 8 ############################################################################################## 9 1.什么是进程?进程和程序之间有什么

高性能IO设计模式之阻塞/非阻塞,同步/异步解析

提到高性能,我想大家都喜欢这个,今天我们就主要来弄明白在高性能的I/O设计中的几个关键概念,做任何事最重要的第一步就是要把概念弄的清晰无误不是么?在这里就是:阻塞,非阻塞,同步,异步. OK, 现在来具体看看. 1. 阻塞和非阻塞是针对于进程在访问数据的时候,根据IO操作的就绪状态来采取的不同方式,说白了是一种读取或者写入操作函数的实现方式,阻塞方式下读取或者写入函数将一直等待,而非阻塞方式下,读取或者写入函数会立即返回一个状态值. 2. 同步和异步是针对应用程序和内核的交互而言的,同步指的是用

[Z] linux基础编程:IO模型:阻塞/非阻塞/IO复用 同步/异步 Select/Epoll/AIO

原文链接:http://blog.csdn.net/colzer/article/details/8169075 IO概念 Linux的内核将所有外部设备都可以看做一个文件来操作.那么我们对与外部设备的操作都可以看做对文件进行操作.我们对一个文件的读写,都通过调用内核提供的系统调用:内核给我们返回一个file descriptor(fd,文件描述符).而对一个socket的读写也会有相应的描述符,称为socketfd(socket描述符).描述符就是一个数字,指向内核中一个结构体(文件路径,数据

linux基础编程:IO模型:阻塞/非阻塞/IO复用 同步/异步 Select/Epoll/AIO(转载)

IO概念 Linux的内核将所有外部设备都可以看做一个文件来操作.那么我们对与外部设备的操作都可以看做对文件进行操作.我们对一个文件的读写,都通过调用内核提供的系统调用:内核给我们返回一个file descriptor(fd,文件描述符).而对一个socket的读写也会有相应的描述符,称为socketfd(socket描述符).描述符就是一个数字,指向内核中一个结构体(文件路径,数据区,等一些属性).那么我们的应用程序对文件的读写就通过对描述符的读写完成. linux将内存分为内核区,用户区.l

理解同步,异步,阻塞,非阻塞,多路复用,事件驱动IO

以下是IO的一个基本过程 先理解一下用户空间和内核空间,系统为了保护内核数据,会将寻址空间分为用户空间和内核空间,32位机器为例,高1G字节作为内核空间,低3G字节作为用户空间.当用户程序读取数据的时候,会经历两个过程:磁盘到内核空间(这块消耗性能,下面简称内核数据准备),内核空间拷贝到用户空间(下面简称用户空间拷贝). 基于这个前提,同步异步IO,阻塞非阻塞IO 这几个概念其实非常类似的,区分的关键点在于被调用者的返回方式. 当我们进行IO操作的时候,如果被调用者将任务全部执行完返回,称为同步

操作系统介绍-操作系统历史,IO,进程的三态,同步异步阻塞非阻塞

1.操作系统历史 2.进程,IO,同步异步阻塞非阻塞 操作系统历史: 手工操作: 1946年第一台计算机诞生--20世纪50年代中期,计算机工作还在采用手工操作方式.此时还没有操作系统的概念. 手工操作方式两个特点: (1)用户独占全机.不会出现因资源已被其他用户占用而等待的现象,但资源的利用率低. (2)CPU 等待手工操作.CPU的利用不充分. 批处理-磁带操作: 主机与输入机之间增加一个存储设备--磁带,在运行于主机上的监督程序的自动控制下,计算机可自动完成:成批地把输入机上的用户作业读入

理解同步异步与阻塞非阻塞

本篇文章我准本从三个大方面来解释下同步异步.阻塞非阻塞的知识,第一个方面主要是说下,到底什么是同步异步.阻塞非阻塞:第二个方面主要是解释下在I/O场景下,同步异步阻塞非阻塞又是怎么定义的,第三个方面介绍下在unix下同步异步又有哪些阻塞非阻塞IO. 1.同步异步与阻塞非阻塞 首先从大的方面来说,"阻塞"与"非阻塞"与"同步"与"异步"不能简单的从字面理解,提供一个从分布式系统角度的回答. 1).同步与异步 同步和异步关注的是消

深入理解同步/异步与阻塞/非阻塞区别 (转)

转载自:http://chuansong.me/n/2124760 几年前曾写过一篇描写同步/异步以及阻塞/非阻塞的文章,最近再回头看,还存在一些理解和认知误区,于是重新整理一下相关的概念,希望对网络编程的同行能有所启发. 同步与异步 首先来解释同步和异步的概念,这两个概念与消息的通知机制有关. 举个例子,比如一个用户去银行办理业务,他可以自己去排队办理,也可以叫人代办,办完之后再告知用户结果.对于要办理这个银行业务的人而言,自己去办理是同步方式,而别人代办完毕再告知则是异步方式. 两者的区别在