Notes About Singular Value Decomposition

A brief summary of SVD:

An original matrix Amn is represented as a muliplication of three matrices:

Amn = UmmSmnVnnT

The columns of U are the orthonormal engenvectors of AAT descendingly ordered by the corresponding eigenvalues, and the columns of V are the orthonormal engenvectors of ATA descendingly ordered by the corresponding eigenvalues. This also suggests that U and V are orthonormal (orthogonal) matrices. A characteristic of the two matrices is that the non-zero eigenvalues of U and V are always the same. is a diagonal matrix containing the square roots of eigenvalues from U and V in descending order. The diagonal entries in S are the singular values of A, the columns in U are called left singular vectors, and the columns in V are called right singular vectors.

时间: 2025-01-18 09:56:01

Notes About Singular Value Decomposition的相关文章

We Recommend a Singular Value Decomposition

We Recommend a Singular Value Decomposition Introduction The topic of this article, the singular value decomposition, is one that should be a part of the standard mathematics undergraduate curriculum but all too often slips between the cracks. Beside

奇异值分解(We Recommend a Singular Value Decomposition)

奇异值分解(We Recommend a Singular Value Decomposition) 原文作者:David Austin原文链接: http://www.ams.org/samplings/feature-column/fcarc-svd译者:richardsun(孙振龙) 在这篇文章中,我们以几何的视角去观察矩阵奇异值分解的过程,并且列举一些奇异值分解的应用. 介绍 矩阵奇异值分解是本科数学课程中的必学部分,但往往被大家忽略.这个分解除了很直观,更重要的是非常具有实用价值.譬如

机器学习学习笔记 PRML Chapter 2.0 : Prerequisite 2 -Singular Value Decomposition (SVD)

Chapter 2.0 : Prerequisite 2 -Singular Value Decomposition (SVD) Chapter 2.0 : Prerequisite 2 -Singular Value Decomposition (SVD) Christopher M. Bishop, PRML, Chapter 2 Probability Distributions 1. Vector Terminology Orthogonality Two vectors and are

[Math Review] Linear Algebra for Singular Value Decomposition (SVD)

Matrix and Determinant Let C be an M × N matrix with real-valued entries, i.e. C={cij}mxn Determinant is a value that can be computed from the elements of a square matrix. The determinant of a matrix A is denoted det(A), det A, or |A|. In the case of

关于SVD(Singular Value Decomposition)的那些事儿

SVD简介 SVD不仅是一个数学问题,在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Semantic Indexing)或隐性语义分析(Latent Semantic Analysis).另外在工程应用中的很多地方都有它的身影,例如在推荐系统方面.在2006年末,电影公司Netflix曾经举办一个奖金为100万刀乐的大赛,这笔奖金会颁给比当时最好系统还

SVD(singular value decomposition)应用——推荐系统中

参考自:http://www.igvita.com/2007/01/15/svd-recommendation-system-in-ruby/ 看到SVD用于推荐评分矩阵的分解,主要是可以根据所需因子实现降维,最终造成的是有损的降维压缩,此处k=2 一.对于矩阵的奇异值分解 任意一个M*N的矩阵A(M行*N列,M>N),可以被写成三个矩阵的乘积: 1. U:(M行M列的列正交矩阵) 2. S:(M*N的对角线矩阵,矩阵元素非负) 3. V:(N*N的正交矩阵的倒置) 即 A=U*S*V'(注意矩

Median absolute deviation | Singular Value Decomposition奇异值分解 | cumulative sums |

Consider the data (1, 1, 2, 2, 4, 6, 9). It has a median value of 2. The absolute deviations about 2 are (1, 1, 0, 0, 2, 4, 7) which in turn have a median value of 1 (because the sorted absolute deviations are (0, 0, 1, 1, 2, 4, 7)). So the median ab

sklearn中LinearRegression关键源码解读

问题的引入 我们知道,线性回归方程的参数,可以用梯度下降法求解,或者用正规方程求解. 那sklearn.linear_model.LinearRegression中,是不是可以指定求解方式呢?能不能从中获取梯度相关信息呢? 下面是线性回归最简单的用法. from sklearn import linear_model # Create linear regression object regr = linear_model.LinearRegression() # Train the model

How to implement an algorithm from a scientific paper

Author: Emmanuel Goossaert 翻译 This article is a short guide to implementing an algorithm from a scientific paper. I have implemented many complex algorithms from books and scientific publications, and this article sums up what I have learned while se