bzoj 3144 切糕 —— 最小割

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144

每个点拆成 R 个,连成一条链,边上是权值,割掉代表选这一层;

然后每个点的第 t 层向四周的点的第 t-d 层连边,就能达到选了第 i 条边,则四周的点必须选 i-d ~ T 范围的边,而对方反过来一连,就限制在 i-d ~ i+d 了;

竟然因为忘记 ct=1 而调了一小时呵呵...

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int const xn=64005,xm=xn*10,inf=1e9;
int n,m,H,hd[xn],ct=1,to[xm],nxt[xm],c[xm],dis[xn],cur[xn],S,T;
queue<int>q;
int rd()
{
  int ret=0,f=1; char ch=getchar();
  while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=0; ch=getchar();}
  while(ch>=‘0‘&&ch<=‘9‘)ret=ret*10+ch-‘0‘,ch=getchar();
  return f?ret:-ret;
}
void ade(int x,int y,int z){to[++ct]=y; nxt[ct]=hd[x]; hd[x]=ct; c[ct]=z;}
void add(int x,int y,int z){ade(x,y,z); ade(y,x,0);}
int id(int x,int y,int k){return ((x-1)*m+y-1)*H+k;}
bool bfs()
{
  for(int i=S;i<=T;i++)dis[i]=0;
  dis[S]=1; q.push(S);
  while(q.size())
    {
      int x=q.front(); q.pop();
      for(int i=hd[x],u;i;i=nxt[i])
    if(!dis[u=to[i]]&&c[i])dis[u]=dis[x]+1,q.push(u);
    }
  return dis[T];
}
int dfs(int x,int fl)
{
  if(x==T)return fl;
  int ret=0;
  for(int &i=cur[x],u;i;i=nxt[i])
    {
      if(dis[u=to[i]]!=dis[x]+1||!c[i])continue;
      int tmp=dfs(u,min(fl-ret,c[i]));
      if(!tmp)dis[u]=0;
      c[i]-=tmp; c[i^1]+=tmp;
      ret+=tmp; if(ret==fl)break;
    }
  return ret;
}
int main()
{
  n=rd(); m=rd(); H=rd(); int d=rd(); S=0; T=n*m*H+1;
  for(int t=1;t<=H;t++)
    for(int i=1;i<=n;i++)
      for(int j=1,x;j<=m;j++)
    {
      x=rd(); int nw=id(i,j,t);
      if(t==1)add(S,nw,x); else add(id(i,j,t-1),nw,x);
      if(t==H)add(nw,T,inf);
      if(t<=d)continue; int k=t-d;//
      if(i>1)add(nw,id(i-1,j,k),inf);
      if(j>1)add(nw,id(i,j-1,k),inf);
      if(i<n)add(nw,id(i+1,j,k),inf);
      if(j<m)add(nw,id(i,j+1,k),inf);
    }
  int ans=0;
  while(bfs())
    {
      memcpy(cur,hd,sizeof hd);
      ans+=dfs(S,inf);
    }
  printf("%d\n",ans);
  return 0;
}

原文地址:https://www.cnblogs.com/Zinn/p/10165307.html

时间: 2024-10-11 00:57:03

bzoj 3144 切糕 —— 最小割的相关文章

bzoj 3144: [Hnoi2013]切糕 最小割

3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q,R≤40,0≤D≤

BZOJ 3144 HNOI 2013 切糕 最小割

题目大意:给出一个三维的点阵,没个点都有可能被切割,代价就是这个点的权值.相邻的切割点的高度差不能超过D,问最小的花费使得上下分开. 思路:很裸的最小割模型,很神的建图. S->第一层的点,f:INF 所有点->它下面的点,f:INF 一个点的入->一个点的出,f:val[i] (i,j,k) - > (i - d,j,k),f:INF 最下面一层的点->T:f:INF 然后跑最小割就是答案. 为什么见:http://www.cnblogs.com/zyfzyf/p/4182

【BZOJ-3144】切糕 最小割-最大流

3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1261  Solved: 700[Submit][Status][Discuss] Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q

BZOJ 2561: 最小生成树(最小割)

U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------------------------- #include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<vector> #include<que

BZOJ 2127: happiness( 最小割 )

最小割.. S连每个人(容量:选择理科的愉悦):每个人连T(容量:选择理科的愉悦) . 对于每一组(x, y, w)x和y同选理增加的愉悦w,新建节点V,V连x(INF),V连y(INF), S连V(w) 对于每一组(x, y, w)x和y同选文增加的愉悦w,新建节点V,x连V(INF),y连V(INF), V连T(w) ------------------------------------------------------------------- #include<cstdio> #i

cogs2398 切糕 最小割

链接:http://cogs.pro/cogs/problem/problem.php?pid=2398 题意:找到一个最小割使损失最小. 字面意思,单纯的最小割.对于每一个点$(i,j,k)$,我们将其与它下方的点$(i,j,k-1)$,连一条容量为该点不和谐度的边,如果高度为1,连到源点,高度为n,建出一条到汇点容量无限大的边.对于高度超过限制高度的点,我们由周围下方可行点向它连容量无限大边. 1 #include<iostream> 2 #include<cstdio> 3

BZOJ 2229 ZJOI2011 最小割 最小割+分治 400AC达成&amp;&amp;2000Submission达成

题目大意:给定一个图,多次询问有多少个点对之间的最小割小于等于某个值 最小割分治- - 首先朴素的想法是做O(n^2)遍网络流 但是这样显然是过不去的 根据一些结论,最小割最多有n-1个,这n-1个最小割构成一个最小割树 别问我为什么- - 因此我们分治寻找这n-1个最小割 每层分治,先任选两个点作为源汇做一遍最小割 然后找出S集和T集,对所有S集的点和T集的点构成的点对用本次得到的最小割更新一遍 注意更新的是全部S集和全部T集,不只是本次分治内部的S集和T集 然后将本次分治的点分成S集和T集,

【bzoj3144】[Hnoi2013]切糕 最小割

[Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2228  Solved: 1220[Submit][Status][Discuss] Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q,R≤40

[BZOJ 1797][AHOI2009]最小割(最小割关键边的判断)

题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1797 分析: 在残余网络中看: 对于第1问: 1.首先这个边必须是满流 2.其次这个边连接的两个点U,V必须属于两个SCC,即这个边必须为一个割 对于第2问: 在第1问的基础上,还要判断U和S.V和T是否分别在同一个SCC中,如果成立,那么这样才是必须的.