Luogu4640 BJWC2008 王之财宝 容斥、卢卡斯定理

传送门

题意:有$N$种物品,其中$T$个物品有限定数量$B_i$,其他则没有限定。问从中取出不超过$M$个物品的方案数,对质数$P$取模。$N,M \leq 10^9 , T \leq 15 , P \leq 10^5$



在$N$种物品中选出不超过$M$中物品的方案数可以用插板法(插板法只能满足刚好$M$个,那么我们可以虚构出一个数量无限的物品,把剩下的没选择完的都丢给它,这样插板法就能做了)

发现$T$很小,直接容斥即可

$N,M \leq 10^9$不能直接预处理,考虑到$P$为质数且范围较小,可以直接使用$Lucas$定理

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3
 4 inline int read(){
 5     int a = 0;
 6     bool f = 0;
 7     char c = getchar();
 8     while(c != EOF && !isdigit(c)){
 9         if(c == ‘-‘)
10             f = 1;
11         c = getchar();
12     }
13     while(c != EOF && isdigit(c)){
14         a = (a << 3) + (a << 1) + (c ^ ‘0‘);
15         c = getchar();
16     }
17     return f ? -a : a;
18 }
19
20 const int MAXN = 100000;
21 int N , M , P , Q , jc[MAXN + 10] , ny[MAXN + 10] , B[16] , ans;
22
23 inline int poww(long long a , int b){
24     int times = 1;
25     while(b){
26         if(b & 1)
27             times = times * a % Q;
28         a = a * a % Q;
29         b >>= 1;
30     }
31     return times;
32 }
33
34 inline int C(int N , int M){
35     if(N < 0 || M < 0 || N < M)
36         return 0;
37     return 1ll * jc[N] * ny[M] % Q * ny[N - M] % Q;
38 }
39
40 int lucas(int N , int M){
41     if(N + M == 0)
42         return 1;
43     return 1ll * C(N % Q , M % Q) * lucas(N / Q , M / Q) % Q;
44 }
45
46 void choose(int now , int num , int cnt){
47     if(num < 0)
48         return;
49     if(now > M)
50         ans = (ans + (cnt & 1 ? -1ll : 1ll) * lucas(num + N , N) + Q) % Q;
51     else{
52         choose(now + 1 , num , cnt);
53         choose(now + 1 , num - B[now] - 1 , cnt + 1);
54     }
55 }
56
57 int main(){
58 #ifdef LG
59     freopen("4640.in" , "r" , stdin);
60 #endif
61     N = read();
62     M = read();
63     P = read();
64     Q = read();
65     jc[0] = ny[0] = 1;
66     for(long long i = 1 ; i < Q ; i++)
67         jc[i] = jc[i - 1] * i % Q;
68     ny[Q - 1] = poww(jc[Q - 1] , Q - 2);
69     for(long long i = Q - 2 ; i ; i--)
70         ny[i] = ny[i + 1] * (i + 1) % Q;
71     for(int i = 1 ; i <= M ; i++)
72         B[i] = read();
73     choose(1 , P , 0);
74     cout << ans;
75     return 0;
76 }

原文地址:https://www.cnblogs.com/Itst/p/9867615.html

时间: 2024-10-08 14:46:48

Luogu4640 BJWC2008 王之财宝 容斥、卢卡斯定理的相关文章

cf451E Devu and Flowers 卢卡斯定理+容斥定理

题目:http://codeforces.com/problemset/problem/451/E 题意:有n个盒子(n<=20),每个盒子中有10^12个小球,现从每个盒子中取出若干球(可为0),求共取出s个小球(s<=10^14)的方案数. 组合数学问题,求C(n,m).但n,m过大时,可用卢卡斯定理. 卢卡斯定理:C(n,m) %p = C(n/p,m/p) * C(n%p,m%p) 从n个盒子中取出s个球的方案数,相当于插板,即 C(s+n-1,n-1).注意这是没有限制条件的情况.

hdu5794 A Simple Chess 容斥+Lucas 从(1,1)开始出发,每一步从(x1,y1)到达(x2,y2)满足(x2?x1)^2+(y2?y1)^2=5, x2&gt;x1,y2&gt;y1; 其实就是走日字。而且是往(n,m)方向走的日字。还有r个障碍物,障碍物不可以到达。求(1,1)到(n,m)的路径条数。

A Simple Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2597    Accepted Submission(s): 691 Problem Description There is a n×m board, a chess want to go to the position (n,m) from the pos

POJ 2773 Happy 2006 二分+容斥(入门

题目链接:点击打开链接 题意: 输入n ,k 求与n互质的第k个数(这个数可能>n) 思路: solve(mid)表示[1,mid]中有多少个和n互质,然后二分一下最小的mid 使得互质个数==k solve(x) 实现: 与n互质的个数=所有数-与n不互质的数=所有数-(与n有一个因子-与n有2个因子的+与n有3个因子的) 状压n的因子个数,然后根据上面的公式容斥得到. #include <stdio.h> #include <iostream> #include <

hdu1695(莫比乌斯)或欧拉函数+容斥

题意:求1-b和1-d之内各选一个数组成数对,问最大公约数为k的数对有多少个,数对是有序的.(b,d,k<=100000) 解法1: 这个可以简化成1-b/k 和1-d/k 的互质有序数对的个数.假设b=b/k,d=d/k,b<=d.欧拉函数可以算出1-b与1-b之内的互质对数,然后在b+1到d的数i,求每个i在1-b之间有多少互质的数.解法是容斥,getans函数参数的意义:1-tool中含有rem位置之后的i的质因子的数的个数. 在 for(int j=rem;j<=factor[i

HDU 4135 Co-prime(容斥+数论)

Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5526    Accepted Submission(s): 2209 Problem Description Given a number N, you are asked to count the number of integers between A and B

hdu 5664 Lady CA and the graph(树的点分治+容斥)

题意: 给你一个有n个点的树,给定根,叫你找第k大的特殊链 .特殊的链的定义:u,v之间的路径,经过题给的根节点. 题解:(来自BC官方题解) 对于求第k大的问题,我们可以通过在外层套一个二分,将其转化为求不小于mid的有多少个的问题. 接下来我们讨论如何求树上有多少条折链的长度不小于k. 我们考虑常规的点分治(对于重心,求出其到其他点的距离,排序+单调队列),时间复杂度为O(nlog^2n),但是这只能求出普通链的数量. 我们考虑将不属于折链的链容斥掉.也即,我们需要求出有多少条长度不小于mi

数学(容斥计数):LNOI 2016 方

Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形 成了多少个正方形(换句话说,正方形的四个顶点都是格点).但是这个问题对于我们来说太难了,因为点数太多 了,所以上帝删掉了这(N+1)×(M+1)中的K个点.既然点变少了,问题也就变简单了,那么这个时候这些格点组成 了多少个正方形呢? Input 第一行三个整数

[coci2011]友好数对 容斥

无趣的小x在玩一个很无趣的数字游戏.他要在n个数字中找他喜欢友好数对.他对友好数对的定义是:如果有两个数中包含某一个以上相同的数位(单个数字),这两个数就是友好数对.比如:123和345 就是友好数对,因为都包含数位3,显然123和234也是由号数对.而12和34则不是友好数对,因为它们没有相同的数位. 刚拿到题没怎么读懂,因为我直观的想法是存一下扫一遍就行了,后来一想,得用容斥:又犯蠢了: 其实这道题的容斥比较基本,看代码吧: #include<iostream> #include<c

HDU 5297 Y sequence 容斥/迭代

Y sequence Problem Description Yellowstar likes integers so much that he listed all positive integers in ascending order,but he hates those numbers which can be written as a^b (a, b are positive integers,2<=b<=r),so he removed them all.Yellowstar ca