线性回归算法原理推导

原文地址:https://www.cnblogs.com/Kctrina/p/9901961.html

时间: 2024-11-06 09:26:47

线性回归算法原理推导的相关文章

机器学习——简单线性回归(原理推导+算法描述+代码实现)

实验环境:Python 3.6 编辑器:Jupyter Notebook 6.0.1 实验要求:可以调用numpy.pandas基础拓展程序包,不可以调用sklearn机器学 ——————————————————我是分割线喵———————————————————— ————————————(如果想要代码可以直接下拉到最后)———————————— 线性模型的一般形式:   向量形式: 线性模型的优点: 1.形式简单.易于建模 2.可解释性 3.是非线性模型的基础,可以在线性模型的基础上引入层级结

机器学习入门-线性回归算法(原理)

数据:工资和年龄(2个特征) 目标:预测银行会贷款多少钱(标签) 考虑: 工资和年龄影响银行贷款,它们各自的影响大小(参数) x1, x2 表示的是两个特征(年龄, 工资) y 是银行最终会借我们多少钱 找到一条最合适线(一些高维点)来最好拟合我们的数据点 假设theta1是年龄的参数, theta2是工资的参数 h0 = theta0 + theta1 * x1 + theta2 * x2  # 目标函数np.dot(X, theta.T) y = h0 + error  # 真实值与预测值的

【机器学习】算法原理详细推导与实现(五):支持向量机(下)

[机器学习]算法原理详细推导与实现(五):支持向量机(下) 上一章节介绍了支持向量机的生成和求解方式,能够根据训练集依次得出\(\omega\).\(b\)的计算方式,但是如何求解需要用到核函数,将在这一章详细推导实现. 核函数 在讲核函数之前,要对上一章节得到的结果列举出来.之前需要优化的凸函数为: \[ min_{\gamma,\omega,b}->\frac{1}{2}||\omega||^2 \] \[ y^{(i)}(\omega^Tx^{(i)}+b) \geq 1 ,i=1,2,.

机器学习--线性回归算法的原理及优缺点

一.线性回归算法的原理 回归是基于已有数据对新的数据进行预测,比如预测股票走势.这里我们主要讲简单线性回归.基于标准的线性回归,可以扩展出更多的线性回归算法. 假设我们找到了最佳拟合的直线方程 : , 则对每一个样本点    ,根据我们的直线方程,预测值为:,其对应的真值为   . 我们希望    和   的差距尽量小,这里我们用   表达   和  的距离, 考虑所有样本则为: 我们的目标是使   尽可能小,而    ,所以我们要找到  a .b  ,使得  尽可能小. 被称为损失函数或效用函

【机器学习】算法原理详细推导与实现(六):k-means算法

[机器学习]算法原理详细推导与实现(六):k-means算法 之前几个章节都是介绍有监督学习,这个章节介绍无监督学习,这是一个被称为k-means的聚类算法,也叫做k均值聚类算法. 聚类算法 在讲监督学习的时候,通常会画这样一张图: 这时候需要用logistic回归或者SVM将这些数据分成正负两类,这个过程称之为监督学习,是因为对于每一个训练样本都给出了正确的类标签. 在无监督学习中,经常会研究一些不同的问题.假如给定若干个点组成的数据集合: 所有的点都没有像监督学习那样给出类标签和所谓的学习样

多层神经网络BP算法 原理及推导

首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解).当网络的层次大于等于3层(输入层+隐藏层(大于等于1)+输出层)时,我们称之为多层人工神经网络. 1.神经单元的选择 那么我们应该使用什么样的感知器来作为神经网络节点呢?在上一篇文章我们介绍过感知器算法,但是直接使用的话会存在以下问题: 1)感知器训练法则中的输出 由于sign函数时非连续函数,这使得它不可微,因而不能使用上面的梯度下降算法来最

【转载】分布式系列文章——Paxos算法原理与推导

转载:http://linbingdong.com/2017/04/17/%E5%88%86%E5%B8%83%E5%BC%8F%E7%B3%BB%E5%88%97%E6%96%87%E7%AB%A0%E2%80%94%E2%80%94Paxos%E7%AE%97%E6%B3%95%E5%8E%9F%E7%90%86%E4%B8%8E%E6%8E%A8%E5%AF%BC/ Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上

08-02 机器学习算法原理

目录 机器学习算法原理 一.1.1 感知机算法 1.1 1.1.1 决策函数 1.1.1 1.1.1.1 sign函数图像 1.2 1.1.2 损失函数 1.3 1.1.3 目标函数 1.4 1.1.4 目标函数优化问题 二.1.2 线性回归 2.1 1.2.1 决策函数 2.2 1.2.2 目标函数 2.3 1.2.3 目标函数优化问题 三.1.3 逻辑回归简介 3.1 1.3.1 Sigmoid函数 3.2 1.3.2 决策函数 3.3 1.3.3 损失函数 3.4 1.3.4 目标函数 3

Adaboost算法原理分析和实例+代码(简明易懂)

Adaboost算法原理分析和实例+代码(简明易懂) [尊重原创,转载请注明出处] http://blog.csdn.net/guyuealian/article/details/70995333     本人最初了解AdaBoost算法着实是花了几天时间,才明白他的基本原理.也许是自己能力有限吧,很多资料也是看得懵懵懂懂.网上找了一下关于Adaboost算法原理分析,大都是你复制我,我摘抄你,反正我也搞不清谁是原创.有些资料给出的Adaboost实例,要么是没有代码,要么省略很多步骤,让初学者